Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.
Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.
Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có cách.
Xếp nữ vào 4 ghế đó. Có 4! cách.
Vậy có cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.
b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.
Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có cách.
Theo quy tắc nhân, có cách.
Xếp 2 bạn nữ đứng trước, số cách là 2!.
Sau đó chọn 2 bạn nam chen vào giữa 2 bạn nữ, số cách chọn; xếp 2 bạn nam đó là .
Sau khi chọn 2 bạn nam đó rồi thì còn 6 bạn nam. Ta coi 2bạn nam và 2 bạn nữa đã xếp chỗ là 1 bạn cùng với 6 bạn nam chưa xếp là có 7 bạn.
Số cách xếp 7 bạn này là 7!.
Áp dụng quy tắc nhân; số cách xếp tất cả là:
Chọn B.
Số cách xếp là:
\(\left(C^2_4\cdot C^2_4-2!\cdot2!\cdot2!\right)\cdot2=56\left(cách\right)\)
\(A:\)"Không có 2 nữ ngồi cạnh nhau"
Xếp sao cho không có 2 bạn nữ nào ngồi cạnh nhau tức nam nữ ngồi xen kẽ.
Xếp 7 bạn nam có \(7!\) cách xếp.
Giữa 7 bạn nam có 8 khoảng trống(gồm 6 khoảng trống ở giữa và 2 khoảng trống ở đầu và cuối)
Xếp 5 bạn nữ sao cho không có 2 bạn nữ nào ngồi cạnh nhau ta xếp 5 bạn nữ vào 2 trong 8 khoảng trống đó có \(A_8^5\)cách xếp.
\(\Rightarrow n\left(A\right)=7!\cdot A_8^5\) cách xếp.
👍🏻 Cách 1.
Như trên hình là số thứ tự các ghế
❤️ Trường hợp 1
Ghế có số lẻ là ghế các bạn nữ thì
G1 có 4 lựa chọn
G3 có 3 lựa chọn
G5 có 2 lựa chọn
G1 có 1 lựa chọn
Các ghế chẵn là nam
G2 có 4 lựa chọn
G4 có 3 lựa chọn
G6 có 2 lựa chọn
G8 có 1 lựa chọn
==> Với trường hợp 1 sẽ có
(4x3x2x1)x(4x3x2x1)=576 cách xếp
❤️ Trường hợp 2
Các ghế lẻ là nam và các ghế chẵn là nữ thì tương tự ta cũng có 576 cách xếp
=> Với cách 1 ta có
2x576=1152 cách xếp
Cách 2 xếp 2 bàn ngược lại với cách 1 thì ta cũng sẽ có
1152 cách xếp
=> Với 2 cách xếp + 4 trường hợp ta có
2x1152=2304 cách xếp