K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

a) Vì ba đường trung trực của tam giác đồng quy nên D thuộc đường trung trực của cạnh BC. Mặt khác đường trung trực của cạnh BC đi qua trung điểm của BC nên D là trung điểm của cạnh BC.

b) Ta có: Tam giác DEA = tam giác DEA (c.g.c) nên góc B = góc A1 

                                                                                <=> góc C = góc A2

=> Góc A = góc A1 + góc A2 = góc B + góc C.

3 tháng 4 2018

xét tam giác sai rồi

3 tháng 5 2019

a) Vì ba đường trung trực của tam giác đồng quy nên D thuộc đường trung trực của cạnh BC. Mặt khác đường trung trực của cạnh BC đi qua trung điểm của BC nên D là trung điểm của cạnh BC.

b)

Ta có ∆DEB = ∆DEA(c.g.c) nên ˆB=ˆA1B^=A1^. Tương tự ˆC=ˆA2C^=A2^.

Suy ra ˆA=ˆA1+ˆA2=ˆB+ˆC

3 tháng 4 2018

a, Theo t/c 3 đường trung trực trong 1 tam giác cắt nhau tại 1 điểm 

=> BD là đường trung trực của BC mà D thuộc BC nên D là trung điểm của BC 

23 tháng 3 2019

a) mik cm đc ý a thôi

a,tự vẽ hình ra nha!

Trên nửa mặt phẳng bờ BC ko chứa điểm A kẻ CH vug góc DH tại H sao cho DA=DH

Xét \(\Delta ABD\)và \(\Delta HBC\)có:

\(\widehat{A_1}=\widehat{H_1}\left(DA\perp AB,HD\perp HC\right)\)

DH=DA(theo cách vẽ)

\(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh)

=> tam giác ABD= tam giác HCD(ch-gn)

=>DB=DC(2 cạnh t/ư)

=> D lak trung điểm của BC(đpcm)

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

22 tháng 12 2018

a, xét tam giác abm và tam giác acm có:

ab=ac(gt)

góc bam=góc acm(gt)

am chung

=>tam giác abm=tam giác acm(cgc)

=>bm=cm(2 cạnh tương ứng)

b, xét tam giác abi và tam giác aci có:

ab=ac(gt)

góc bam=góc acm(gt)

ai chung

=>tam giác abi = tam giác aci(cgc)

=>ib=ic (2 cạnh tương ứng)

=> i cách đều b và c

=>ai là đường trung trực của bc