K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

A B C O M N E K T

a) Có ^AOB = 1800 - ^OAB - ^OBA = 1800 - ^BAC/2 - ^ABC/2 = 900 + (1800 - ^BAC - ^ABC)/2 = 900 + ^ACB/2

b) Dễ thấy A,M,O,E cùng thuộc đường tròn đường kính OA (Vì ^AMO = ^AEO = 900) (1)

Ta có ^AOK = 1800 - ^AOB = 1800 - (900 + ^ABC/2) = 900 - ^ACB/2 = ^CEN (Do \(\Delta\)CEN cân tại C)

=> Tứ giác AOKE nội tiếp hay A,O,K,E cùng thuộc một đường tròn (2)

Từ (1) và (2) suy ra năm điểm A,M,K,O,E cùng thuộc một đường tròn (đpcm).

c) Ta thấy A,O,K,E cùng thuộc một đường tròn (cmt) và OK cắt AE tại T

Nên \(\frac{KT}{ET}=\frac{AT}{OT}\)(Hệ thức lượng đường tròn). Kết hợp \(\frac{AT}{OT}=\frac{AB}{OB}\)(AO là phân giác ^BAT)

Suy ra \(\frac{KT}{ET}=\frac{AB}{OB}\). Mặt khác: ^BKN = ^OAE = ^BAO và ^NBK = ^OBA => \(\Delta\)BKN ~ \(\Delta\)BAO (g.g)

=> \(\frac{AB}{OB}=\frac{KB}{NB}\). Từ đây \(\frac{KT}{ET}=\frac{KB}{BN}\)=> KT.BN = KB.ET (đpcm).

23 tháng 2 2022

Từ các cặp tam giác đồng dạng ta có:

\(BE=\frac{AB^2}{BC};CD=\frac{BC^2}{CA};AF=\frac{CA^2}{AB}\)

\(\Rightarrow AF+BE+CD=\frac{AB^2}{BC}+\frac{BC^2}{CA}+\frac{CA^2}{AB}\ge\frac{\left(AB+BC+CA\right)^2}{AB+BC+CA}=C_{ABC}\)

Dấu bằng xảy ra khi \(\frac{AB}{BC}=\frac{BC}{CA}=\frac{CA}{AB}=\frac{AB+BC+CA}{BC+CA+AB}=1\) hay tam giác ABC đều.

22 tháng 2 2022

jjjjjjjqqqqqqqqaaaaaaaaooooooooooyyyyyyyyyyrrrrrrriggigigigigiiggigigigggigiigigigigigiggigigi

6 tháng 10 2019

A B C K E D M F G

Gọi đường tròn đó cắt cạnh AB tại G khác B. Vì \(\Delta\)ABC cân tại A nên GD // BC.

Dựng hình bình hành AEFD. Khi đó DF // AE // BC. Suy ra F,D,G thẳng hàng, từ đây ^KDF = ^KBG (1)

Ta có ^DBK = ^DCK = ^ECA và ^DKB = ^DCB = ^EAC, suy ra \(\Delta\)BKD ~ \(\Delta\)CAE (g.g)

Suy ra \(\frac{KD}{DF}=\frac{KD}{AE}=\frac{KB}{AC}=\frac{KB}{BA}\), kết hợp với (1) ta được \(\Delta\)DKF ~ \(\Delta\)BKA (c.g.c)

Từ đó \(\Delta\)KFA ~ \(\Delta\)KDB (c.g.c). Do vậy ^KAF = ^KBD = ^KCD = ^KEF

Suy ra ^AKE = ^AFE = ^DAF = ^MAD (Vì A,M,F thẳng hàng) (đpcm).