K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
gọi
\(b_1,b_2,..b_n\) là phép chia lấy phần dư của các \(a_1,a_2,...,a_n\) cho n
.Giả sử không có số nào chia hết cho n, thì các \(b_i\) đều là các số tự nhiện nằm trong khoảng \(1\le b_i\le n-1\)
do có n phần tử \(b_i\) mà chỉ có n-1 giá trị nên theo nguyên lí dirichlet tồn tại hai số \(b_i\) \(=b_j\)
Hay nói cách khác \(a_i\text{ và }a_j\text{ đồng dư mode n}\)
hay hiệu \(a_i-a_j\) chia hết cho n
vậy ta có điều phải chứng minh