Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét m=4 =>(d):y=1 =>Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1
Xét m=3 =>(d):x=-1=> Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1
Xét \(m\ne4;m\ne3\)
Gọi \(A=Ox\cap\left(d\right)\) \(\Rightarrow A\left(\dfrac{1}{m-4};0\right)\), \(B=Oy\cap\left(d\right)\Rightarrow B\left(0;\dfrac{1}{m-3}\right)\)
Gọi H là hình chiếu của O lên AB
Có \(OH^2=\dfrac{OA^2.OB^2}{OA^2+OB^2}=\dfrac{\left(\dfrac{1}{m-4}\right)^2.\left(\dfrac{1}{m-3}\right)^2}{\left(\dfrac{1}{m-4}\right)^2+\left(\dfrac{1}{m-3}\right)^2}\)
\(=\dfrac{1}{\left(m-4\right)^2\left(m-3\right)^2\left[\dfrac{1}{\left(m-4\right)^2}+\dfrac{1}{\left(m-3\right)^2}\right]}\)
\(=\dfrac{1}{\left(m-4\right)^2+\left(m-3\right)^2}\)
\(=\dfrac{1}{2m^2-14m+25}=\dfrac{1}{2\left(m-\dfrac{7}{2}\right)^2+\dfrac{1}{2}}\le2\)
=> \(OH\le\sqrt{2}\)
=> Khoảng cách lớn nhất gốc tọa độ đến (d) là \(\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\) (thỏa)
Xét điểm \(A\left(-1;1\right)\). Dễ thấy A thuộc (d). Gọi H là hình chiếu của O trên (d). Ta có \(OH\le OA=\sqrt{2}\). Dấu "=" xảy ra khi và chỉ khi \(H\equiv A\), tức là \(d\perp OA\).
Ta cần tìm m sao cho \(d\perp OA\). Phương trình đường thẳng đi qua O, A là
y = -x. Xét m = 4 thì đường thẳng (d) trở thành \(y=1\), đường thẳng này song song với trục hoành và không vuông góc với d. Xét m khác 4. Khi đó \(\left(m-4\right)x+\left(m-3\right)y=1\Leftrightarrow y=\dfrac{4-m}{m-3}x+\dfrac{1}{m-3}\). Để \(d\perp OA\) thì \(\dfrac{4-m}{m-3}.\left(-1\right)=-1\Leftrightarrow4-m=m-3\Leftrightarrow m=\dfrac{7}{2}\).
Vậy Max \(OH=\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\).
a) Gọi M(x0;y0) là điểm cố dịnh mà (d) luôn đi qua
Ta có: M(x0;y0) thuộc (d) : \(y_0=\left(3m-2\right)x_0+m-2\)
\(\Leftrightarrow3mx_0-2x_0+m-2-y_0=0\)
\(\Leftrightarrow m\left(3x_0+1\right)-\left(2x_0+y_0\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x_0+1=0\\2x_0+y_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=\frac{-1}{3}\\2.\left(\frac{-1}{3}\right)+y_0=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=\frac{-1}{3}\\y_0=\frac{2}{3}\end{cases}}}\)
Vậy \(M\left(\frac{-1}{3};\frac{2}{3}\right)\) là điểm cố định mà (d) luôn đi qua với mọi giá trị của m
Đường thẳng (d) qua điểm cố định \(A\left(-1;1\right)\)
Đường thẳng OA có phương trình: \(y=-x\) nên có hệ số góc bằng -1
\(\Rightarrow\) K/c từ O đến (d) lớn nhất khi 2 đường thẳng (d) và OA vuông góc
\(\Rightarrow\) Tích hệ số góc của chúng bằng -1
Ta có: \(\left(m-4\right)x+\left(m-3\right)y=1\Rightarrow\left(3-m\right)y=\left(m-4\right)x-1\)
\(\Rightarrow y=\dfrac{m-4}{3-m}-\dfrac{1}{3-m}\)
\(\Rightarrow\left(\dfrac{m-4}{3-m}\right).\left(-1\right)=-1\)
\(\Rightarrow m-4=3-m\)
\(\Rightarrow m=\dfrac{7}{2}\)
Phương trình 2 :
2m - ym\(^2\)-2y = 1
(=)ym^2 + 2y = 2m -1
(=)y(m^2 + 2)=2m -1
Mà m^2 + 2 >0
Suy ra y=\(\frac{2m-1 }{m^2+2}\)
x=2-my=\(\frac{m+4}{m^2+2}\)
Ta có x >0 ; y<0
Mà m^2 +2 > 0
Suy ra
2m-1<0
m+4>0
Giải phương trình ta có
m<1/2(tm)
m>-4 (tm)
Vậy -4<m<1/2 Tìm số nguyên tự tìm
Bạn trả lời lộn câu ?