K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho n là số nguyên dương lớn hơn 1.Tìm tất cả bộ số nguyên (a;b;c;d) thỏa mãn :an=bn+cn+dn+2005Bài 2: Trong 1 hội nghị có 41 người nam và nữ.Trong số 31 người bất kì luôn tìm được 1 đôi nam nữ quen nhau.Chứng minh rằng trong số 41 người đó luôn tìm được 12 đôi nam nữ quen nhau.Bài 3: Cho 1 hình chữ nhất có S=1.Bên trong có 5 điểm phân biệt sao cho không có 3 điểm nào thẳng hàng và có...
Đọc tiếp

Bài 1: Cho n là số nguyên dương lớn hơn 1.Tìm tất cả bộ số nguyên (a;b;c;d) thỏa mãn :
an=bn+cn+dn+2005

Bài 2: Trong 1 hội nghị có 41 người nam và nữ.Trong số 31 người bất kì luôn tìm được 1 đôi nam nữ quen nhau.Chứng minh rằng trong số 41 người đó luôn tìm được 12 đôi nam nữ quen nhau.

Bài 3: Cho 1 hình chữ nhất có S=1.Bên trong có 5 điểm phân biệt sao cho không có 3 điểm nào thẳng hàng và có thể nằm trên biên hình chữ nhật. Chứng minh rằng tồn tại ít nhất 2 tam giác có S=14(các tam giác có đỉnh là 3 trong 5 điểm trên).

Bài 4: Cho Ai là những tập hợp hữu hạn phần tử

|N⋃i=1Ai|=∑1≤k≤N|Ak|−∑1≤i1<i2≤N|Ai1∩Ai2|+⋯+(−1)N−1|A1∩A2∩⋯∩AN|

Trong đó |X| là số các phần tử của tập hợp X.

Bài 5: Cho đa giác lồi 2n-đỉnh: a1,...,a2n, P là một điểm nằm trong đa giác nhưng không nằm trên đường chéo nào. CMR số tam giác có các đỉnh trong a1,...,a2n chứa điểm P là một số chẵn.

Bài 6: Cho 1 từ có n âm tiết (VD: từ "đi chơi” có 2 âm tiết). Hỏi có bao nhiêu cách nói lái từ này trong 2 trường hợp :
-Mọi cách nói lái đều có thể chấp nhận.
- Có 1 số từ chỉ có thể nhận dấu sắc và dấu năng ( VD:dep, sat, gac…..).

Bài 7: Cho n-giác . Một số đường chéo của n-giác thỏa mãn 3 tính chất sau:
1) Không có 2 đường chéo nào cắt nhau (trong đoạn)
2) n-giác bị chia thành các tam giác
3) Số đường chéo xuất phát từ mỗi đỉnh đều là số chẵn ( có thể là 0 )
CMR: 3|n.

Bài 8: Một tập hợp gồm 1985 phần tử là 1985 số tự nhiên đầu tiên được chia làm 6 tập hợp.CM trong 1 tập có chứa ít nhất 3 phần tử(không nhất thiết phân biệt) thỏa mãn số lớn nhất bằng tổng 2 số còn lại.

Bài 9: Cho n là số tự nhiên, (n>2)
Xét các từ gồm n chữ n chữ B
Từ x1x2...x2n gọi là thuộcS(n) nếu có đúng 1 đoạn khởi đầu chứa lượng chữ B giống nhau
Tính:limS(n)R(n)

Bài 10:
Trong một hình chữ nhật 1999x2000 .Ở ô (i,j) ghi số 3x2 hoặc 5x2 rồi đổi dấu tất cả các số ở tất cả các ô trong hình chữ nhật.Hỏi sau một số chẵn lần thực hiện tổng các số trong bảng có thể là 1998 đuợc không?

Bài 11: Có thể phủ được hay không một bảng hình chữ nhật kích thước 5x7 bằng những hình thuớc thợ ba ô sao cho mỗi ô đều được phủ bởi một số lượng như nhau những hình thước thợ ?

Bài 12: Tìm số nguyên dương x1,x2,...,xn,a1,a2,...,an−1 với a1<a2<...<an−1 thỏa mãn x1x2...xn=1980 và xi+1980xi∀i=1,2,...,n−1

Bài 13: Chứng minh rằng không thể dùng 25 tấm domino cỡ 1x4 để phủ kín bảng vuông 10x10.

Bài 14: Đối với 1 đồ thị hữu hạn ta có thể xóa 1 cạnh tùy ý trong 1 vòng 4 cạnh tùy ý. Với đồ thị đầy đủ n đỉnh thì việc xóa cạnh có thể kết thúc sau ít nhất bao nhiêu lần?

Bài 15: Xác đinh tất cả các giá trị của m,n sao cho hinh chữ nhật m.n có thể lát khít kín bởi các hock:
**
*
***

Bài 16: Tìm hằng số C nhỏ nhất sao cho với mọi đồ thị hữu hạn G ta có
g3(G)≤c⋅f4(G)
trong đó g(G) và f(G) lần lượt là số các tứ diện, số các tam giác trong G

Bài 17: Tại 1 trường ĐH có 10001 SV, các SV tham gia các CLB, 1 SV có thể tham gia nhiều CLB, các CLB nghiên cứu các môn KH, 1CLB có thể nghiên cứu nhiều môn KH.Có k môn KH. Biết rằng:
i) mỗi cặp SV tham gia cùng nhau đúng 1 CLB
ii) không có SV nào tham gia 2 CLB nghiên cứu cùng 1 môn KH
iii) mỗi CLB có lẻ SV tham gia
iv) CLB có 2m+1 SV thì nghiên cứu đúng m môn KH
Tính k.

Bài 18: Người ta điền số vào 441 ô vuông của bảng vuông 21*21 sao cho tại mỗi hàng và mỗt cột có không quá 6 giá trị khác nhau được điền vào. Chứng minh rằng có một số xuất hiện ở ít nhất 3 hàng và ít nhất 3 cột của bảng vuông này.

Bài 19:
Câu 1)
Cho 1 điểm M không thuộc đường thẳng d. CM không tồn tại tập điểm Ai vô hạn thuộc d thỏa mãn :
-Khoảng cách AiAj∈Z
-MAi∈Z
Câu 2)
Như trên thay d bởi mặt phẳng (P).

Bài 20: Cho đường gâp khúc khép kín n đoạn thẳng:
Tìm n để đường gâp khúc tự căt mỗi đoạn thẳng của mình tại k điểm (k cho trước)
Với mỗi k và n ,tìm số giao điểm.

Bài 21: Tìm k để tồn tại đường gâp khúc khép kín n cạnh , tự cắt nhau k lân` (với n cho trước)

Bài 22: Với m là số nguyên dương,cho s(m) là tổng các chữ số của m.Với f(n) là số k nhỏ nhất sao cho tồn tại một tập S gồm n số nguyên dương thỏa mãn X của S.Chứng minh rằng tồn tại các hằng số dương 0<C1<C2 với C1lg(n)≤f(n)≤C2lg(n),∀n≥2.

Bài 23: Viết n số tự nhiên trên một đường tròn.Tìm n sao cho với mọi dãy gồm n số tự nhiên ta luôn tìm được hai số cạnh nhau sao cho sau khi xoá chúng đi các số còn lại có thể chia thành hai tập hợp có tổng các phần tử bằng nhau.

Bài 24: Cho bảng vuông 2n⋅2n(n∈N,n≥2) . Ta điền 2n2 số tự nhiên từ 1→2n2 vào bảng, mỗi số lặp lại hai lần.
Chứng minh rằng tồn tại một cách chọn 2n2 số tự nhiên từ 1→2n2 ,mỗi số một lần sao cho trên mỗi hàng và mỗi cột luôn có ít nhất 1 số được chọn.

Bài 25: Giả sử rằng có 18 ngọn hải đăng trên vịnh BaTư ,mỗi ngọn trong chúng có thể chiếu sáng được một góc 200.Chứng minh rằng có thể chọn hướng chiếu sáng của chúng sao cho toàn mặt vịnh BaTư được chiếu sáng.

Bài 26: Giả sử có n điểm phân biệt trên mặt phẳng. Có vòng tròn với bán kính r và tâm O trên mặt phẳng. Ít nhất một trong các điểm nằm trong vòng tròn. Chúng ta làm các hướng dẫn sau đây. Tại mỗi bước chúng ta di chuyển O đến trọng tâm của các điểm trong vòng tròn. Chứng minh rằng vị trí của O là không đổi sau khi một số hữu hạn bước.

Bài 27: Cho k là số nguyên dương và Sn={1,2,...,n},(n≥3). Hàm f:Skn→Sk thỏa mãn: nếu a,b∈Skn và chúng khác nhau ở tất cả các vị trí thì f(a)≠f(b). Chứng minh rằng có i∈{1,2,...,k} sao cho:
f(a1,a2,...,ak)=ai,∀a=(a1,a2,...,ak)∈Skn.

Bài 28: Cho (O) bán kính 1,và F là hình lồi đóng nằm trong C(Nghĩa là:Nếu P,Q là các điểm của F thì đoạn thẳng PQ nằm trong F;tất cả các điểm biên của F nằm trong F;tất cả các điểm của F nằm trong đường tròn C.).Hơn nữa giả sử rằng từ mỗi điểm của C có thể vẽ được hai tia tiếp tuyến của F mà góc giữa chúng bằng 600.Chứng minh rằng F là hình tròn bán kính 12.

Bài 29: Cho 100 điểm là đỉnh của đa giác đều 100 cạnh nội tiếp đường tròn. Lấy trong đó ra 20 điểm, 10 điểm tô màu đỏ, 10 điểm tô màu xanh. Chứng minh rằng tồn tại 2 cặp điểm có độ dài bằng nhau, 1 cặp cùng màu đỏ, 1 cặp cùng màu xanh.

Bài 30: Cho n số d1,d2,...,dn.
Tìm điều kiện cần và đủ để các số này là bậc của 1 đồ thị
a)n đỉnh
b)có giả thuyết a và là Đồ thị liên thông.
c)có giả thuyết a và có đường đi khép kín đến các đỉnh.

9
12 tháng 3 2016

nhanh cho ****

12 tháng 3 2016

bai nhu the thi bo may tra loi duoc ak

1) Trong một giải bóng đágồm 9 đội. Tại một thời điểm nào đóngười ta đã phát hiệnra đúng 2 đội đã đấu xong một số trận bằng nhau. Chứng minh vào thời điểm đó cóđúng một đội chưa đấu trận nào hoặc có đúng một đội đã đấu xong.2) Có 8 người tham gia giải cờ, số điểm của họ khác nhau. Số điểm của người thứhai bằng số điểm của 4 người xếp sau cùng. Hỏi giữa...
Đọc tiếp

1) Trong một giải bóng đágồm 9 đội. Tại một thời điểm nào đóngười ta đã phát hiện
ra đúng 2 đội đã đấu xong một số trận bằng nhau. Chứng minh vào thời điểm đó có
đúng một đội chưa đấu trận nào hoặc có đúng một đội đã đấu xong.
2) Có 8 người tham gia giải cờ, số điểm của họ khác nhau. Số điểm của người thứ
hai bằng số điểm của 4 người xếp sau cùng. Hỏi giữa người thứ 3 và 7 ai thắng ai(
thắng 1đ, hòa 0,5đ, thua 0đ).
3) Có thể sắp xếp trên 1 vòng tròn 20 thẻ đỏ và 1 số thẻ xanh sao cho tại mỗi điểm
đối xứng qua tâm của thẻ đỏ là thẻ xanh và không có hai thẻ xanh nào đứng cạnh
nhau được không?
4) Trên 1 đường tròn ta tô màu xanh một số cung sao cho 2 cung màu xanh bất kỳ
không có điểm chung và tổng độ dài của các cung màu xanh nhỏ hơn nửa chu vi
đường tròn. C/m có ít nhất 1 đường kính của đường tròn mà 2 đầu không bị tô màu.
5) Có thể dùng 3 hình chữ T(4 ô vuông) và 2 hình chữ I(2 ô vuông) xếp kín hình
vuông 4x4 được không?
6) Có thể xếp kín hình 4 ô chữ T( cạnh mỗi ô vuông bằng 1) thành hình vuông cạnh
2018 được không?
7) Hai người mỗi người bốc ít nhất 11 viên và không quá 20 viên bi trong số 2020
viên bi. Người nào bốc được viên bi cuối cùng là người thắng cuộc. C/m người đi
đầu luôn thắng nếu luật chơi cho phép nước đầu có thể bốc ít hơn 11 viên.
8) Cho một bàn cờ 8x8 ô vuông bị thiếu mất hai ô ở hai góc đối diện. Hỏi có thể
dùng các hình chữ nhật 1x2 ô vuông phủ kín bàn cờ đã cho được không?
9) Có thể phủ hình chữ nhật 13x20 ô vuông bởi các hình 4 ô vuông như sau được
không?

10) Một nền nhà hình chữ nhật dự kiến được lát bởi những viên gạch loại 1x4 và
2x2, do sơ suất khi vận chuyển người thợ đã làm bể mất 1 viên gạch loại 2x2.
Hỏi người thợ có thể thay thế bằng viên gạch loại 1x4 được không ?

KHÔNG CẦN LÀM HẾT NHA; AI BIẾT CÂU NÀO LÀM JUP MÌNH CÂU ĐÓ VS

2
31 tháng 7 2019

cách làm chi tiết bài số 7 nhá.ta dự đoán(theo kinh nghiệm khi giải mấy bài cơ bản kiểu này) là khi người 2 bốc bao nhiêu thì người 1 bốc x- số người 2 vừa bốc.làm thế thì CHO DÙ NGƯỜI 2 BỐC BAO NHIÊU THÌ TỔNG 1 LƯỢT VẪN LÀ X.vì vậy chúng ta sẽ đưa người 2 vào vòng lặp này bằng lần bốc đầu và chiến  thắng bằng lần x cuối cùng.vì bốc từ 11-20 nên ta phải chọn x(ta có thể chọn x) sao cho người 2 bốc bao nhiêu ta vx bốc đc x- số đó.vì vậy x phải là 11+20=31.vì vậy lượt đầu ta bốc 5 viên.còn lại ng 2 bốc bao nhiêu thì ta bốc 31- bấy nhiêu thì ta thắng vì 2015 chia hết cho 31

31 tháng 7 2019

bài số 8 nhé.ko thể.bàn cờ mất 2 ô ở 2 góc chéo nên ko mất tính tổng quát giả sử mất 2 ô màu trắng.nhận xét cho dù có xếp 1x2 như thế nào thì cx che hết 1 ô đen và 1 ô trắng.vì vậy để che hết bàn cờ chứng tỏ nếu che 32 ô đen(toàn bộ ô đen trên bàn cờ) thì cx PHẢI che mất 32 ô trắng.nhưng thực tế có 30 ô trắng vì vậy ko thể.

hình như 1 số bài thiếu thông tin???

31 tháng 12 2015

CHTT nha

3 tháng 5 2016

bai toan nay ngộ qua phai k anh

toan lop 9 ma cu nhu lop 6....(em se lam)

Strong rau = 1260.2/3 = 840m2

Sao = (1260 -840).3/5 = 252m2

Sloi di = 1260- (840+252) = 168m2

6 tháng 6 2018

đề bài thiếu

Ngày xưa, ở một vương quốc xa xôi nọ, có một Hoàng tử vô cùng hiếu thảo. Ngày kia, vua cha lâm bệnh nặng, Hoàng tử đã đi khắp nơi tìm thầy thuốc giỏi chữa bệnh cho đức vua. Động lòng trước tấm lòng hiếu thảo của Hoàng tử, Bụt hiện ra trao cho Hoàng tử một cuộn giấy và một tấm bản đồ.Cuộn giấy có ghi dòng kí tự sau: Tấm bản đồ như hình: Bụt nói với Hoàng tử: “Hiện tại...
Đọc tiếp

Ngày xưa, ở một vương quốc xa xôi nọ, có một Hoàng tử vô cùng hiếu thảo. Ngày kia, vua cha lâm bệnh nặng, Hoàng tử đã đi khắp nơi tìm thầy thuốc giỏi chữa bệnh cho đức vua. Động lòng trước tấm lòng hiếu thảo của Hoàng tử, Bụt hiện ra trao cho Hoàng tử một cuộn giấy và một tấm bản đồ.

Cuộn giấy có ghi dòng kí tự sau:

 

Tấm bản đồ như hình:

 

Bụt nói với Hoàng tử: “Hiện tại con đang đứng ở vị trí có hình  trên bản đồ. Mỗi ô vuông trong bản đồ chứa một trong các kí tự . Từ một ô, con chỉ có thể bước tới ô bên trái hoặc phải hoặc bên trên hoặc bên dưới của ô hiện thời. 

Con hãy đọc các kí tự ghi trong cuộn giấy theo thứ tự từ trái sang phải và bước vào các ô trên bản đồ có kí tự tương ứng, mỗi ô có thể đi qua nhiều lần. Khi gặp kí tự trên bản đồ, con có thể lấy được một lọ thuốc cho đức vua. Đường đi của con kết thúc khi con không tìm thấy ô nào trên bản đồ để bước tới”

Ví dụ: Từ ô có hình, Hoàng tử có thể đi từng bước như sau: dưới – dưới - phải - phải - trên- trên - trên – trên – trái. Qua 8 bước đi này, Hoàng tử có thể lấy được 3 lọ thuốc cho đức vua.

Dựa vào dòng kí tự trên cuộn giấy và tấm bản đồ, em hãy giúp Hoàng tử tìm ra một đường đi để lấy được nhiều lọ thuốc nhất.

1
15 tháng 2 2016

Đề gì mà dài thế, ai đọc cũng không muốn giải rồi

1. BA NHÀ THÔNG THÁICó ba nhà triết gia Hy-Lạp cổ, sau một cuộc tranh luận căng thẳng và cũng vì trời hè nóng nực nên đã nằm ngủ dưới gốc cây trong vườn của Viện Hàn lâm. Có mấy thợ thông lò đi qua tinh nghịch đã bôi nhọ lên trán cả ba triết gia.Khi ba nhà thông thái tỉnh dậy, họ nhìn nhau và cùng phá lên cười. Ai cũng yên chí rằng chỉ có hai người kia bị nhọ và họ cười nhau, còn mình...
Đọc tiếp


1. BA NHÀ THÔNG THÁI
Có ba nhà triết gia Hy-Lạp cổ, sau một cuộc tranh luận căng thẳng và cũng vì trời hè nóng nực nên đã nằm ngủ dưới gốc cây trong vườn của Viện Hàn lâm. Có mấy thợ thông lò đi qua tinh nghịch đã bôi nhọ lên trán cả ba triết gia.
Khi ba nhà thông thái tỉnh dậy, họ nhìn nhau và cùng phá lên cười. Ai cũng yên chí rằng chỉ có hai người kia bị nhọ và họ cười nhau, còn mình thì cười họ. Thế nhưng, trong khoảnh khắc, một triết gia không cười nữa vì ông ta suy đoán ra trên trán ông ta cũng bị nhọ.
Vậy nhà thông thái đó suy luận như thế nào?

2. HAI CHỊ EM SINH ĐÔI
Ở thành phố T có một cặp sinh đôi khá đặc biệt. Tên hai cô là Nhất và Nhị. Những điều ly kỳ về hai cô lan truyền đi khắp nơi. Cô Nhất không có khả năng nói đúng vào những ngày thứ hai, thứ ba và thứ tư, còn những ngày khác nói đúng. Cô Nhị nói sai vào những ngày thứ ba, thứ năm và thứ bảy, còn những ngày khác nói đúng.
Một lần tôi gặp hai cô và hỏi một trong hai người:
- Cô hãy cho biết, trong hai người cô là ai?
- Tôi là Nhất.
- Cô hãy nói thêm, hôm nay là thứ mấy?
- Hôm qua chủ nhật.
Cô kia bỗng xem vào:
- Ngày mai là thứ sáu.
Tôi sững sờ ngạc nhiên-Sao lại thế được?-và quay sang hỏi cô đó:
- Cô cam đoan là cô nói thật chứ?
- Ngày thứ tư tôi luôn luôn nói thật – cô đó trả lời.
Hai cô làm tôi lúng túng thực sự, nhưng sau một hồi suy nghĩ tôi đã xác định được cô nào là cô Nhất, cô nào là cô Nhị, thậm chí còn xác định được ngày hôm đó là thứ mấy.
Mời bạn hãy thử làm xem.

3. CỤ GIÀ NÓI THẦM ĐIỀU GÌ?
Có hai chàng trai Kozak là Grisko và Oponos đều là những kỵ sỹ tài ba. Trong các cuộc thi khi người này, khi thì người kia thắng, nhưng ai phi ngựa nhanh hơn, các cuộc tranh luận đều không phân giải được. Cuối cùng Grisko đề nghị một cuộc thi: Ngựa của ai về sau thì người đó thắng. Oponos chấp thuận.
Cuộc thi như vậy được tổ chức, người xem khá đông. Khi trọng tài nổ súng phát hiệu lệnh thì lạ thay: cả hai kỵ sỹ đều chỉ đứng nguyên ở vị trí xuất phát. Khán giả chờ đợi, hò hét huyên náo. Xem ra cuộc thi không bao giờ chấm dứt.
Vừa lúc đó có một cụ già tóc bạc đi tới. Thấy chuyện lạ, cụ hỏi, người ta nói cho cụ hiểu thì cụ lớn tiếng nói:
- Xin quý khán giả hãy bình tĩnh, tôi sẽ nói thầm một điều với cả hai kỵ sỹ thì họ sẽ phi như bay về đích cho mà xem.
Quả vậy, cụ già gọi hai chàng trai đến bên cụ, cầm lấy tay họ và nói thầm vào tai từng người. Khi cụ bỏ tay họ ra thì cả hai kỵ sỹ đều chạy như bay tới ngựa, nhảy lên và phóng như bay về đích.
Cuối cùng, người thắng vẫn là người có ngựa về sau.
Vậy cụ già đã nói thầm điều gì với cả hai kỵ sỹ?

4. DU KHÁCH ĐANG Ở ĐÂU?
Có một du khách đến một trong hai thành phố A, B của một đất nước tuyệt đẹp. Người thành phố A luôn luôn nói thật, người thành phố B luôn luôn nói dối. Trong thành phố A có một số dân của thành phố B và ngược lại.
Bạn hãy suy nghĩ xem người khách cần phải đặt câu hỏi như thế nào khi gặp người đầu tiên để từ câu trả lời có thể biết được mình đang ở đâu?

5. QUÂN XANH, QUÂN ĐỎ
Tiến hành một trò chơi, các em thiếu niên chia làm hai đội: quân xanh và quân đỏ. Đội quân đỏ bao giờ cũng nói đúng, còn đội quân xanh bao giờ cũng nói sai.
Có ba thiếu niên đi tới là An, Dũng và Cường. Người phụ trách hỏi An: “Em là quân gì?”. An trả lời không rõ, người phụ trách hỏi lại Dũng và Cường: “An đã trả lời thế nào?”. Dũng nói “An trả lời bạn ấy là quân đỏ”, còn Cường nói: “An trả lời bạn ấy là quân xanh”.
Hỏi Dũng và Cường thuộc quân nào?
6. ĐẠO LUẬT TÀN ÁC
Ở một vương quốc nọ có ông vua tàn ác. Ông ta không muốn người lạ vào lãnh thổ của mình nên ra lệnh cho tất cả các lính biên phòng phải thi hành một đạo luật sau:
Bất kỳ một người nước khác lọt tới đều phải trả lời câu hỏi: “Vì sao anh tới đây?”. Nếu người đó trả lời đúng thì đem dìm xuống nước, nếu trả lời sai thì đem treo cổ.
Một lần, có một người nông dân nước láng giềng vô tình đến một trạm biên phòng. Người lính ra câu hỏi: “Vì sao anh tới đây?” và chuẩn bị hành tội anh ta.
Thế nhưng người nông dân thông minh đó đã trả lời một câu mà người lính biên phòng không thể xác định được đúng hay sai để hành tội anh ta theo đạo luật của nhà vua.
Vậy người nông dân đó đã trả lời như thế nào?

7. BỨC CHÂN DUNG AI?
Người ta hỏi Trung: “Bức ảnh trên tường là chân dung ai?”. Trung trả lời: “Bố của người đó là người con trai duy nhất của ông bố người đang trả lời các bạn”.
Hỏi người trong ảnh là chân dung ai?
8. ANH THỢ CẠO TRONG THÔN
Người ta đưa ra một định nghĩa về anh thợ cạo trong thôn như sau:
“Gọi người đàn ông trong thôn là thợ cạo nếu anh ta cắt tóc cho tất cả những người trong thôn không tự cắt lấy”.
Hỏi: Với định nghĩa như vậy anh thợ cạo có tự cắt tóc cho mình hay không?
Trả lời:
- Nếu anh thợ cạo tự cắt cho mình thì mâu thuẫn với định nghĩa là anh ta chỉ cắt cho những ai không tự cắt lấy.
- Nếu anh thợ cạo không tự cắt cho bản thân anh ta thì cũng theo định nghĩa anh ta phải cắt cho anh ta, vẫn mâu thuẫn.
Bạn hãy xác định xem mâu thuẫn nảy sinh từ đâu?

9. THÀNH CÔNG CỦA TUỔI TRẺ
Tôi chơi cờ cũng khá nhưng hai người bạn thân của tôi là những tay cờ tuyệt diệu. Tôi chơi với mỗi người một ván và cả hai thắng tôi một cách dễ dàng. Có một người bạn nhỏ của tôi – mới 10 tuổi – chỉ mới biết các quy tắc chơi cờ nhưng lại cả quyết rằng sẽ chơi tốt hơn tôi. Để chứng tỏ điều đó cậu ta ra điều kiện:
“Tôi sẽ chơi cùng một lúc với cả hai người bạn của anh trên hai bàn cờ và chắc chắn tôi sẽ đạt kết quả tốt hơn anh là không thua cả hai người”.
Ta có thể giải thích sự thành công của người bạn nhỏ như thế nào?

10. NÓI TIÊN TRI
Trước đây ở một nước Á đông có một ngôi đền thiêng do ba thần ngự trị: Thần Sự Thật (luôn luôn nói thật), thần Lừa Dối (luôn luôn nói dối) và thần Mưu Mẹo (lúc nói thật, lúc nói dối). Các thần ngự trên bệ thờ sẵn sàng trả lời khi có người tới thỉnh cầu. Nhưng vì hình dạng của các thần hoàn toàn giống nhau nên người ta không biết thần nào trả lời để mà tin hay không tin.
Một triết gia từ xa đến, để xác định các thần, ông ta hỏi thần bên trái:
- Ai ngồi cạnh ngài?
- Đó là thần Sự Thật – thần bên trái trả lời.
Tiếp theo ông ta hỏi thần ngồi giữa:
- Ngài là thần gì?
- Ta là thần Mưu Mẹo.
Sau cùng, ông ta hỏi thần bên phải:
- Ai ngồi cạnh ngài?
- Đó là thần Lừa Dối – thần bên phải trả lời.
Người triết gia kêu lên:
- Tất cả đã rõ ràng, các thần đều đã được xác định.
Vậy nhà triết gia đó đã xác định các thần như thế nào?

11
31 tháng 12 2016

dài dử

cs mệt ko bn

nhìn đã choáng joi

3 tháng 3 2017

ko hieu