K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2020

\(\overrightarrow{AB}=\left(-4;2\right)\)

Gọi \(\overrightarrow{A'B'}=\left(a;b\right)\) , do A' là ảnh của A, B' là ảnh của B trong cùng phép vị tự nên \(\overrightarrow{A'B'}\) cũng là ảnh của \(\overrightarrow{AB}\) qua phép vị tự đó

\(\Rightarrow\left\{{}\begin{matrix}a-1=4\left(-4-1\right)\\b-1=4\left(2-1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-19\\b=5\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{A'B'}=\left(-19;5\right)\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 5:

Vecto tịnh tiến là:

$\overrightarrow{AA'}=(x_{A'}-x_A, y_{A'}-y_A)=(2-3, 3-2)=(-1,1)$

$B'$ là ảnh của $B$ qua phép tịnh tiến theo vecto $overrightarrow{AA'}$ nên:

$\overrightarrow{BB'}=\overrightarrow{AA'}$

$\Leftrightarrow (x_{B'}-x_B, y_{B'}-y_B)=(-1,1)$

\(\Leftrightarrow \left\{\begin{matrix} x_{B'}=x_B-1=2-1=1\\ y_{B'}=y_B+1=5+1=6\end{matrix}\right.\)

Vậy tọa độ điểm $B'$ là $(1,6)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 4:

Đường tròn $(C)$ có tâm $I(1;2)$

Đường tròn $(C')$ có tâm $I'(0;3)$

$R=R'=2$

Vecto tịnh tiến biến đường tròn $(C)$ thành $(C')$ là:

$\overrightarrow{v}=\overrightarrow{II'}=(-1,1)$

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)

c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó

(A) = A' ⇔

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có A = (C) ⇔ C= (A) = (4;3)

c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

NV
25 tháng 8 2020

Do phép vị tự tỉ số k biên \(\overrightarrow{u}\) thành \(\overrightarrow{v}\Rightarrow\overrightarrow{v}=k\overrightarrow{u}\)

\(\Leftrightarrow\left(-1;-4\right)=k\left(2;8\right)\Rightarrow\left\{{}\begin{matrix}-1=2k\\-4=8k\end{matrix}\right.\)

\(\Rightarrow k=-\frac{1}{2}\)