K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$

$\Leftrightarrow 0=2.1-m+3=5-m$

$\Leftrightarrow m=5$

b.

PT hoành độ giao điểm:

$x^2-(2x-m+3)=0$

$\Leftrightarrow x^2-2x+m-3=0(*)$

Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi:

$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$

Khi đó:
$x_1^2-2x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

$\Rightarrow x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

10 tháng 4 2022

a) Thay A(1; -9) vào (d), ta có:

-9 = 3m + 1 - m2

<=> -9 - 3m - 1 + m2 = 0

<=> -10 - 3m + m2 = 0

<=> m = 5 hoặc m = -2

b) Lập phương trình hoành độ giao điểm:

x2 = 3mx + 1 - m2

<=> x2 - 3mx - 1 + m2 = 0

Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)

<=> (-3m)2 - 4.1.(-1 + m2) = 0

<=> 9m2 + 4 - 4m2 > 0

<=> 5m2 + 4 > 0\(\forall m\)

Ta có: x1 + x2 = 2x1x2 

Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)

<=> 3m = 2(-1 + m2)

<=> 3m = -2 + m2 

<=> 3m + 2 - m2 = 0

<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)

30 tháng 6 2020

Cảm ơn bạn nhiều ạ.

25 tháng 3 2022

a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4) 

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2x-m^2+2m=0\)

\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Để pt có 2 nghiệm pb khi m khác 1 

c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)

Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)

Thay vào ta được \(2x_1+m^2+2x_2=5m\)

\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)

\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)

31 tháng 3 2022

b) x2-2x-m2+2m=0

Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1

KL:....

c) với m≠1 thì PT có 2 nghiệm PB

C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)

tt. tính x2

C2. 

Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)

Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)

Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:

 \(P=x_1\left(2-x_1\right)=-m^2+2m\)

⇔2x1-x12=-m2+2m

⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)

⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)

Vậy với m=4 thì .....

27 tháng 3 2019

câu a bạn thay x=-1 ,y= 3 vào (d) nha

câu b)

Xét pt hoành độ giao điểm :

\(2x-a+1=\frac{1}{2}x^2\Rightarrow x^2-4x+2a-2=0\)

Bạn tự xét delta để tìm điều kiện nha

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=4\\x_1\cdot x_2=2a-2\end{cases}}\)

\(x_1x_2\left(y_1+y_2\right)+48=0\Rightarrow\frac{1}{2}x_1x_2\left(x_1^2+x_2^2\right)+48=0\)

\(\Rightarrow\frac{1}{2}x_1x_2\left(x_1+x_2\right)^2-2\cdot\frac{1}{2}x_1^2x_2^2+48=0\)

\(\Rightarrow\frac{1}{2}\left(2a-2\right)\cdot4^2-\left(2a-2\right)^2+48=0\)

\(\Rightarrow-4a^2+24a+28=0\)

\(\Rightarrow\orbr{\begin{cases}a=7\\a=-1\end{cases}}\)

17 tháng 6 2018

có y=-x^2 =>(x1-x2)^2+(x2^2-x1^2)^2 =25

ok rồi sau đó tựbiến đổi nhé . mình lười lắm :))))

1 tháng 7 2020

b) Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt 

\(\Leftrightarrow x^2+2x-m+1=0\)có 2 nghiệm phận biệt \(\Leftrightarrow\Delta'=m>0\)

theo đinh lý ziet : \(x_1+x_2=-2,x_1x_2=-m+1\)

có \(y_1=2x_1-m+1,y_2=2x^2-m+1=>y_1-y_2=2\left(x_1-x_2\right)\)

Nên : \(25=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5\left(x_1-x_2\right)^2=>\left(x_1-x_2\right)=5\)

hay \(\left(x_1+x_2\right)^2-4x_1x_2=5=>4-4\left(-m+1\right)=5=>m=\frac{5}{4}\left(TM\right)\)