Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)
a) Ta có: d(M;\(\Delta\))=\(\dfrac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=2\)
PTTS của \(\Delta\):\(\left\{{}\begin{matrix}x=4t-1\\y=3t-1\end{matrix}\right.\)
Gọi H là hình chiếu của M trên\(\Delta\)=>\(\exists t\in R\)để H(4t-1;3t-1)
MH=2 =>(4t-2)2+(3t+1)2=4
<=>25t2+10t+1=0
<=>(5t+1)2=0
<=>\(t=-\dfrac{1}{5}\)
=>H\(\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)
M' đối xứng với M qua \(\Delta\)=> H là TĐ của MM'
=>tọa độ M'\(\left(-\dfrac{23}{5};-\dfrac{6}{5}\right)\)
b)\(\Delta'\)đối xứng \(\Delta\)qua M=>VTPT của \(\Delta'\)là \(\overrightarrow{n}=\left(3;-4\right)\)(1)
Lấy I(-1;-1) => I thuộc \(\Delta\)
Lấy I' đối xứng I qua M=>I'(3;-3) \(\in\Delta'\)(2)
Từ (1) và (2) => phương trình \(\Delta':\)3(x-3)-4(y+3)=0
hay 3x-4y-21=0
c)Đường tròn (C) có tâm M(1;-2) tiếp xúc \(\Delta\)=> bán kính đường tròn bằng \(d_{\left(M;\Delta\right)}\)=2
=>Phương trình đường tròn:
(C): (x-1)2+(y+2)2=4
Tọa độ điểm A, B là nghiệm của hệ phương trình :
\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\) \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)
\(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)
Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC
Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)
\(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)
Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)
a/ \(\overrightarrow{AB}=\left(0;4\right)=4\left(0;1\right)\) ; \(\overrightarrow{AC}=\left(-3;0\right)=-3\left(1;0\right)\) ; \(\overrightarrow{CB}=\left(3;4\right)\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow\) Đường tròn ngoại tiếp tam giác ABC nhận trung điểm BC là tâm và BC là đường kính
Gọi I là trung điểm BC \(\Rightarrow I\left(\frac{1}{2};2\right)\)
\(R=\frac{BC}{2}=\frac{1}{2}\sqrt{3^2+4^2}=\frac{5}{2}\)
Phương trình (C):
\(\left(x-\frac{1}{2}\right)^2+\left(y-2\right)^2=\frac{25}{4}\Leftrightarrow x^2+y^2-x-4y-2=0\)
b/ Do d song song BC nên d nhận \(\left(4;-3\right)\) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{R^2-\left(\frac{EF}{2}\right)^2}=\frac{3}{2}\)
\(\Rightarrow\frac{\left|4.\frac{1}{2}-3.2+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\frac{3}{2}\Leftrightarrow\left|c-4\right|=\frac{15}{2}\Rightarrow\left[{}\begin{matrix}c=\frac{23}{2}\\c=-\frac{7}{2}\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y+\frac{23}{2}=0\\4x-3y-\frac{7}{2}=0\end{matrix}\right.\)