Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(P):
x | -2 | -1 | 0 | 1 | 2 |
y | -2 | -1/2 | 0 | -1/2 | -2 |
(d): x =0 => y =- 4
y = 0 => x =4
câu a bạn thay x=-1 ,y= 3 vào (d) nha
câu b)
Xét pt hoành độ giao điểm :
\(2x-a+1=\frac{1}{2}x^2\Rightarrow x^2-4x+2a-2=0\)
Bạn tự xét delta để tìm điều kiện nha
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=4\\x_1\cdot x_2=2a-2\end{cases}}\)
\(x_1x_2\left(y_1+y_2\right)+48=0\Rightarrow\frac{1}{2}x_1x_2\left(x_1^2+x_2^2\right)+48=0\)
\(\Rightarrow\frac{1}{2}x_1x_2\left(x_1+x_2\right)^2-2\cdot\frac{1}{2}x_1^2x_2^2+48=0\)
\(\Rightarrow\frac{1}{2}\left(2a-2\right)\cdot4^2-\left(2a-2\right)^2+48=0\)
\(\Rightarrow-4a^2+24a+28=0\)
\(\Rightarrow\orbr{\begin{cases}a=7\\a=-1\end{cases}}\)
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
Bạn lại ghi nhầm đề, xuất hiện 2 con \(x_2\) ở biểu thức câu b mà mình đoán 1 con phải là \(x_1\)
a)
g(x) = 2x - 3 g(x) = 2x - 3 f: 0.5x + y = 2 f: 0.5x + y = 2 TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3”
b) Do (D3) // (D1) nên \(a=-\frac{1}{2}\)
Vậy thì phương trình của (D3) là \(y=-\frac{1}{2}x+b\)
Do (D3) qua điểm (2;-2) nên \(-\frac{1}{2}.2+b=-2\Rightarrow b=-1\)
Vậy (D3) : \(y=-\frac{1}{2}x-1\)
1, Có M (P) và điểm M có tung độ là -8 nên y = -8
Thay y = -8 vào (P) ta được
-8 = -x2 = -16 x = 4
M1 = (4 ;-8) ; M2 = (-4 ;-8)
Vậy …
2, hoành độ điểm chung của (P) và (d) là nghiệm của pt :
= x + m x2 + 2x + 2m = 0 (*)
Pt (*) có ’= 12 – 2m = 1 – 2m
Để (d) cắt (P) tại 2 điểm phận biệt > 0 1 - 2m > 0
m <
m < ½ thì (d) cắt (P) tại 2 điểm phân biệt A (x1 ;y1) ; B (x2 ;y2)
Theo định lý vi-et có
Theo bài ra ta có :
(x1 + y1) . (x2 + y2) =
(x1 – )(x2 - ) = 33/4 ( do y = )
x1( 1 - 2.( 1 - ) = 33/4
x1.x2.( ) = 33/4
4m2 + 16m – 33 = 0
Có = 82 -4.(-33) = 196 > 0
pt có 2 nghiệm phân biệt
m1 = ( loại ) ; m2 = - (t/m)
Vậy m = - là giá trị cần tìm
#ZyZy
a,thay M(\(x_m;-8\)) vào (p) ta có
-8=\(\dfrac{-x^2}{2}\)\(\Leftrightarrow\)x=\(\pm\)4
vậy có 2 điểm \(M_1\left(-4;-8\right);M_2\left(4;-8\right)\)thuộc parabol
b,hoành độ giao điểm của đường thẳng (d) và (p) là nghiệm của pt
\(\dfrac{-x^2}{2}=x+m\) \(\Delta=4-8m\)
(d) và (p) cắt nhau tại 2 điệm phân biệt \(\Leftrightarrow\)\(\Delta\)>0hay m<\(\dfrac{1}{2}\)
với m<\(\dfrac{1}{2}\)pt trên có 2 nghiêm pb sau đó bạn tính \(x_1;x_2theo\) m hoặc tính theo vi ét sau đó tính \(y_1;y_2\)
để thay vào điều kiện (\(x_1+y_1\))(\(x_2+y_2\))=\(\dfrac{33}{4}\)rồi đối chiếu điều kiện và kết luận
Hoành độ giao điểm (P) và (d) là :
\(\frac{1}{2}x^2-\frac{1}{4}x-\frac{3}{2}=0\)\(\Leftrightarrow2x^2-x-6=0\)( a=2; b=-1; c=-6)
\(\Delta=b^2-4ac=\left(-1\right)^2-4.2.\left(-6\right)=49>0\)
Vậy pt có 1 no phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+7}{2\cdot2}=2\); \(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-7}{2.2}=-\frac{3}{2}\)
Khi \(x_1\)=2\(\Rightarrow y_1=\frac{1}{2}.2^2=2\Rightarrow A\left(2;2\right)\)
Khi \(x_2=-\frac{3}{2}\Rightarrow y_2=\frac{1}{2}.\left(-\frac{3}{2}\right)^2=\frac{9}{8}\)
Do đó: \(T=x_1+\frac{x_2}{y_1}+y_2=2+\left(\frac{-\frac{3}{2}}{2}\right)+\frac{9}{8}=\frac{19}{8}\)