K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Gọi  c → = x ; y .

Ta có c → . a → = 9 c → . b → = − 20 ⇔ − 3 x + 2 y = 9 − x − 7 y = − 20 ⇔ x = − 1 y = 3 ⇒ c → = − 1 ; 3 .  

Chọn B.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\overrightarrow {AB}  = (3 - 1;4 - 2) = (2;2)\) và \(\overrightarrow {CD}  = (6 - ( - 1);5 - ( - 2)) = (7;7)\)

b) Dễ thấy: \((2;2) = \frac{2}{7}.(7;7)\)\( \Rightarrow \overrightarrow {AB}  = \frac{2}{7}.\overrightarrow {CD} \)

Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng phương.

c) Ta có: \(\overrightarrow {AC}  = ( - 1 - 1; - 2 - 2) = ( - 2; - 4)\) và \(\overrightarrow {BE}  = (a - 3;1 - 4) = (a - 3; - 3)\)

Để \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương thì \(\frac{{a - 3}}{{ - 2}} = \frac{{ - 3}}{{ - 4}}\)\( \Leftrightarrow a - 3 =  - \frac{3}{2}\)\( \Leftrightarrow a = \frac{3}{2}\)

Vậy \(a = \frac{3}{2}\) hay \(E\left( {\frac{3}{2};1} \right)\) thì hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương

d)

Cách 1:

Ta có: \(\overrightarrow {BE}  = \left( {\frac{3}{2} - 3; - 3} \right) = \left( { - \frac{3}{2}; - 3} \right)\) ; \(\overrightarrow {AC}  = ( - 2; - 4)\)

\( \Rightarrow \overrightarrow {BE}  = \frac{3}{4}.\overrightarrow {AC} \)

Mà \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE} \) (quy tắc cộng)

\( \Rightarrow \overrightarrow {AE}  = \overrightarrow {AB}  + \frac{3}{4}.\overrightarrow {AC} \)

Cách 2:

Giả sử \(\overrightarrow {AE}  = m\,.\,\overrightarrow {AB}  + n\,.\,\overrightarrow {AC} \)(*)

Ta có:  \(\overrightarrow {AE}  = \left( {\frac{1}{2}; - 1} \right)\), \(m\,.\,\overrightarrow {AB}  = m\left( {2;2} \right) = (2m;2m)\), \(n\,.\,\overrightarrow {AC}  = n( - 2; - 4) = ( - 2n; - 4n)\)

Do đó (*) \( \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m;2m) + ( - 2n; - 4n)\)

\(\begin{array}{l} \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m - 2n;2m - 4n)\\ \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{2} = 2m - 2n\\ - 1 = 2m - 4n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\n = \frac{3}{4}\end{array} \right.\end{array}\)

Vậy \(\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{3}{4}.\overrightarrow {AC} \)

17 tháng 5 2017

a) \(\overrightarrow{a}=2\overrightarrow{u}+3\overrightarrow{v}=2\left(3;-4\right)+3\left(2;5\right)=\left(6;-8\right)+\left(6;15\right)\)\(=\left(12;7\right)\).
b) \(\overrightarrow{b}=\overrightarrow{u}-\overrightarrow{v}=\left(3;-4\right)-\left(2;5\right)=\left(1;-9\right)\).
c) Hai véc tơ \(\overrightarrow{c}=\left(m;10\right)\)\(\overrightarrow{v}\) cùng phương khi và chỉ khi:
\(\dfrac{m}{2}=\dfrac{10}{5}=2\Rightarrow m=4\).

22 tháng 12 2018

dài dữ

22 tháng 12 2018

b1 : x =4 , y= 2 , z=5

b2 : ta có : \(\overrightarrow{AB}=\left(-4;1\right)\); \(\overrightarrow{AC}=\left(2m;m-5\right)\)

ĐỂ A,B,C thẳng hàng

<=> \(\dfrac{2m}{-4}=\dfrac{m-5}{1}\)

=> m =10/3

b3: \(\overrightarrow{AB}.\overrightarrow{AC}=\)AB .AC .cos 60\(^0\)=a.a .1/2 =\(\dfrac{a^2}{2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\overrightarrow {BA}  = (2 - ( - 2);1 - 5) = (4; - 4)\) và \(\overrightarrow {BC}  = ( - 5 - ( - 2);2 - 5) = ( - 3; - 3)\)

b)

Ta có: \(\overrightarrow {BA} .\overrightarrow {BC}  = 4.( - 3) + ( - 4).( - 3) = 0\)

\( \Rightarrow \overrightarrow {BA}  \bot \overrightarrow {BC} \) hay \(\widehat {ABC} = {90^o}\)

Vậy tam giác ABC vuông tại B.

Lại có: \(AB = \left| {\overrightarrow {BA} } \right| = \sqrt {{4^2} + {{( - 4)}^2}}  = 4\sqrt 2 \); \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{3^2} + {{( - 3)}^2}}  = 3\sqrt 2 \)

Và \(AC = \sqrt {A{B^2} + B{C^2}}  = 5\sqrt 2 \) (do \(\Delta ABC\)vuông tại B).

Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}.AB.BC = \frac{1}{2}.4\sqrt 2 .3\sqrt 2  = 12\)

Chu vi tam giác ABC là: \(AB + BC + AC = 4\sqrt 2  + 3\sqrt 2  + 5\sqrt 2  = 12\sqrt 2 \)

c) Tọa độ của trọng tâm G là \(\left( {\frac{{2 + ( - 2) + ( - 5)}}{3};\frac{{1 + 5 + 2}}{3}} \right) = \left( {\frac{{ - 5}}{3};\frac{8}{3}} \right)\)

d) Giả sử điểm D thỏa mãn BCAD là một hình bình hành có tọa độ là (a; b).

Ta có: \(\overrightarrow {CB}  = ( 3; 3)\) và \(\overrightarrow {AD}  = (a - 2;b - 1)\)

Vì BCAD là một hình bình hành  nên \(\overrightarrow {AD}  = \overrightarrow {CB} \)

\(\begin{array}{l} \Leftrightarrow (a - 2;b - 1) = ( 3;3)\\ \Leftrightarrow \left\{ \begin{array}{l}a - 2 =  3\\b - 1 =  3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  5 \\b = 4\end{array} \right.\end{array}\)

Vậy D có tọa độ (5; 4)

21 tháng 9 2021

Ai giúp đi

mình cần trong 5 phút nữa

 

NV
14 tháng 11 2021

a. \(\overrightarrow{AB}=\left(2;0\right)\) ; \(\overrightarrow{BC}=\left(-3;3\right)\) ; \(\overrightarrow{CA}=\left(1;-3\right)\)

b. Do \(\dfrac{2}{-3}\ne\dfrac{0}{3}\Rightarrow\) hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương

\(\Rightarrow\) 3 điểm A;B;C không thẳng hàng

c.

\(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}=\dfrac{5}{2}\\y_M=\dfrac{y_B+y_C}{2}=\dfrac{3}{2}\end{matrix}\right.\)  \(\Rightarrow M\left(\dfrac{5}{2};\dfrac{3}{2}\right)\)

\(\left\{{}\begin{matrix}x_N=\dfrac{x_C+x_A}{2}=\dfrac{3}{2}\\y_N=\dfrac{y_C+y_A}{2}=\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow N\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)

\(\left\{{}\begin{matrix}x_P=\dfrac{x_A+x_B}{2}=3\\y_P=\dfrac{y_A+y_B}{2}=0\end{matrix}\right.\) \(\Rightarrow P\left(3;0\right)\)

6 tháng 12 2021

a, \(\overrightarrow{BA}=\left(0-4;-2-1\right)\)

           =\(\left(-4;-3\right)\)

6 tháng 12 2021

có bt lm câu b ko bnthanghoa