K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Tọa độ trọng tâm là:

\(\left\{{}\begin{matrix}x=\dfrac{1+3+5}{3}=3\\y=\dfrac{1+5-1}{3}=\dfrac{5}{3}\end{matrix}\right.\)

b: \(\overrightarrow{BC}=\left(2;-6\right)\)

\(\overrightarrow{AD}=\left(x-1;y-1\right)\)

Để BC//AD và BC=2AD thì 2=2(x-1) và -6=2(y-1)

=>x-1=1 và y-1=-3

=>x=2 và y=-2

2 tháng 1 2023

câu a thiếu chu vi kìa =))

 

NV
13 tháng 1 2021

Đề thiếu hết dữ liệu tọa độ các điểm rồi bạn

NV
24 tháng 12 2020

1.

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-\dfrac{3}{2}\\y_I=\dfrac{y_A+y_B}{2}=1\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{3}{2};1\right)\)

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=0\\y_G=\dfrac{y_A+y_B+y_C}{3}=0\end{matrix}\right.\) \(\Rightarrow G\left(0;0\right)\)

2.

\(\left\{{}\begin{matrix}\overrightarrow{CI}=\left(-\dfrac{9}{2};3\right)\\\overrightarrow{AG}=\left(-2;-3\right)\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}CI=\sqrt{\left(-\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\\AG=\sqrt{\left(-2\right)^2+\left(-3\right)^2}=\sqrt{13}\end{matrix}\right.\)

NV
24 tháng 12 2020

3.

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-7;-4\right)\\\overrightarrow{DC}=\left(3-x;-2-y\right)\end{matrix}\right.\)

\(ABCD\) là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7=3-x\\-4=-2-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=10\\y=2\end{matrix}\right.\) 

\(\Rightarrow D\left(10;2\right)\)

4. Gọi \(H\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CH}=\left(x-3;y+2\right)\\\overrightarrow{AH}=\left(x-2;y-3\right)\\\overrightarrow{BC}=\left(8;-1\right)\end{matrix}\right.\)

H là trực tâm \(\Leftrightarrow\left\{{}\begin{matrix}AH\perp BC\\CH\perp AB\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8\left(x-2\right)-1\left(y-3\right)=0\\-7\left(x-3\right)-4\left(y+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x-y=13\\-7x-4y=-13\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{5}{3};\dfrac{1}{3}\right)\)

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

7 tháng 11 2019

Đáp án B

29 tháng 12 2023

a: Tọa độ trung điểm của AC là:

\(\left\{{}\begin{matrix}x=\dfrac{6+2}{2}=\dfrac{8}{2}=4\\y=\dfrac{1+5}{2}=\dfrac{6}{2}=3\end{matrix}\right.\)

b: A(6;1); B(-1;2); C(2;5)

\(\overrightarrow{AB}=\left(-7;1\right);\overrightarrow{AC}=\left(-4;4\right)\)

Vì \(\dfrac{-7}{-4}\ne\dfrac{1}{4}\)

nên A,B,C không thẳng hàng

=>A,B,C lập được thành 1 tam giác

c: Tọa độ trọng tâm của ΔABC là:

\(\left\{{}\begin{matrix}x=\dfrac{6-1+2}{3}=\dfrac{7}{3}\\y=\dfrac{1+2+5}{3}=\dfrac{8}{3}\end{matrix}\right.\)

d: \(AB=\sqrt{\left(-1-6\right)^2+\left(2-1\right)^2}=\sqrt{7^2+1^2}=5\sqrt{2}\)

\(AC=\sqrt{\left(2-6\right)^2+\left(5-1\right)^2}=\sqrt{4^2+4^2}=4\sqrt{2}\)

\(BC=\sqrt{\left(2+1\right)^2+\left(5-2\right)^2}=3\sqrt{2}\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+BC+AC=5\sqrt{2}+4\sqrt{2}+3\sqrt{2}=12\sqrt{2}\)

Xét ΔABC có \(AB^2=BC^2+CA^2\)

nên ΔACB vuông tại C

=>\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot3\sqrt{2}\cdot4\sqrt{2}=2\sqrt{2}\cdot3\sqrt{2}=12\)