K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Nhận xét d và d’ không song song nên phép đối xứng trục biến d thành d’ có trục là phân giác của góc tạo bởi d và d’. Phương trình các đường phân giác là:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

24 tháng 5 2017

Dễ thấy d và d' không song song với nhau. Do đó trục đối xứng \(\Delta\) của phép đối xứng biến d thành d' chính là đường phân giác của góc tạo bởi d và d'. Từ đó suy ra \(\Delta\) có phương trình :

Phép dời hình và phép đồng dạng trong mặt phẳng

17 tháng 4 2017

Dễ thấy d và d' không song song với nhau.

Do đó trục đối xứng Δ của phép đối xứng biến d thành d' chính là đường phân giác của góc tạo bởi d và d'.

Từ đó suy ra Δ có phương trình:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó tìm được hai phép đối xứng qua các trục:

Δ 1  có phương trình: x + y – 5 = 0,

Δ 2  có phương trình: x – y – 1 = 0.

24 tháng 5 2017

Giao của d và d' với Ox lần lượt là \(A\left(-2;0\right)\)\(A'\left(8;0\right)\). Phép đối xứng qua tâm cần tìm biến A thành A' nên tâm đối xứng của nó là \(I=\left(3;0\right)\)

7 tháng 11 2018

31 tháng 3 2017

Cách 1:

Lấy hai điểm A(0;2) và B (-1;-1) thuộc d. Gọi A' = {D_{Oy}}^{} (A), B' = {D_{Oy}}^{} (B)

Khi đó A' = (0;2), B' = (1;-1). Vậy d' có phương trình = hay 3x + y -2 =0

Cách 2:

Gọi M'(x', y') là ảnh của M (x;y) qua phép đối xứng trục Oy. Khi đó x' = -x và y' = y. Ta có M thuộc d ⇔ 3x-y+2 =0 ⇔ -3x' - y' + 2=0 ⇔ M' thuộc đường thẳng d' có phương trình 3x + y - 2 = 0

31 tháng 3 2017

Cách 1:

Lấy hai điểm A(0;2) và B (-1;-1) thuộc d. Gọi A' = {D_{Oy}}^{} (A), B' = {D_{Oy}}^{} (B)

Khi đó A' = (0;2), B' = (1;-1). Vậy d' có phương trình = hay 3x + y -2 =0

Cách 2:

Gọi M'(x', y') là ảnh của M (x;y) qua phép đối xứng trục Oy. Khi đó x' = -x và y' = y. Ta có M thuộc d ⇔ 3x-y+2 =0 ⇔ -3x' - y' + 2=0 ⇔ M' thuộc đường thẳng d' có phương trình 3x + y - 2 = 0

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Giao của d với trục \(Ox\) là điểm \(A\left(3;0\right)\). Phép tịnh tiến phải tìm có vectơ tịnh tiến \(\overrightarrow{v}=\overrightarrow{AO}=\left(-3;0\right)\). Đường thẳng d' song song với d đi qua gốc tọa độ nên nó có phương trình \(3x-y=0\)