K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2020

Gọi \(M\left(x_0;y_0\right)\) là 1 điểm thuộc d \(\Rightarrow3x_0+y_0-2=0\) (1)

Gọi M' là ảnh của M qua phép vị tự tâm O tỉ số k \(\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=kx_M\\y_{M'}=ky_M\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_{M'}=-\frac{1}{2}x_0\\y_{M'}=-\frac{1}{2}y_0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-2x_{M'}\\y_0=-2y_{M'}\end{matrix}\right.\)

Thế vào (1): \(3.\left(-2x_{M'}\right)-2y_{M'}-2=0\)

\(\Leftrightarrow3x_{M'}+y_{M'}+1=0\)

Vậy pt d' có dạng: \(3x+y+1=0\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

17 tháng 5 2018

a) Lấy hai điểm A(0;4) và B(2;0) thuộc d. Gọi A′, B′ theo thứ tự là ảnh của A và B qua phép vị tự tâm O tỉ số k = 3. Khi đó ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 

 

Vì  O A →   =   ( 0 ; 4 ) nên  O A ' →   =   ( 0 ; 12 ) . Do đó A′ = (0;12).

Tương tự B′ = (6;0); d1 chính là đường thẳng A'B' nên nó có phương trình:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Có thể giải tương tự như câu a) .

Sau đây ta sẽ giải bằng cách khác.

Vì d 2   / /   d nên phương trình của d 2  có dạng 2x + y + C = 0.

Gọi A′ = (x′;y′) là ảnh của A qua phép vị tự đó thì ta có:

I A ' →   =   − 2 I A →  hay x′ + 1 = −2, y′ − 2 = −4

Suy ra x′ = −3, y′ = −2

Do A' thuộc d 2  nên 2.(−3) – 2 + C = 0.

Từ đó suy ra C = 8

Phương trình của d 2  là 2x + y + 8 = 0

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

23 tháng 11 2017

Đáp án A

24 tháng 8 2019

9 tháng 2 2019

Phương trình đường thẳng d: 3x + y + 6 = 0

Lấy M(-2;0) thuộc d. Phép vị tự tâm O (0;0) tỉ số k = 2 biến d thành d’//d với d’ có dạng là 3x + y + c = 0 (c 6) và biến M thành M’ thì  O M ' → = 2 O M →

  ⇔ x = 2. − 2 = − 4 y = 2.0 = 0 ⇒ M'(-4; 0)

Vì M thuộc d nên M’ thuộc d’, thay tọa độ M’ vào d’ ta được:

3.(-4) + 0 + c = 0  c = 12 (tm)

Phương trình đường thẳng d’: 3x + y + 12 = 0 

Chọn đáp án D

24 tháng 5 2017

Dễ thấy d chứa điểm \(H\left(1;1\right)\)\(OH\perp d\). Gọi H' là ảnh của H qua phép quay tâm O góc \(45^0\) thì \(H=\left(0;\sqrt{2}\right)\)

Từ đó suy ra d' phải qua H' và vuông góc với O'. Vậy phương trình của d' là \(y=\sqrt{2}\)

31 tháng 3 2017

Cách 1:

Lấy hai điểm A(0;2) và B (-1;-1) thuộc d. Gọi A' = {D_{Oy}}^{} (A), B' = {D_{Oy}}^{} (B)

Khi đó A' = (0;2), B' = (1;-1). Vậy d' có phương trình = hay 3x + y -2 =0

Cách 2:

Gọi M'(x', y') là ảnh của M (x;y) qua phép đối xứng trục Oy. Khi đó x' = -x và y' = y. Ta có M thuộc d ⇔ 3x-y+2 =0 ⇔ -3x' - y' + 2=0 ⇔ M' thuộc đường thẳng d' có phương trình 3x + y - 2 = 0

31 tháng 3 2017

Cách 1:

Lấy hai điểm A(0;2) và B (-1;-1) thuộc d. Gọi A' = {D_{Oy}}^{} (A), B' = {D_{Oy}}^{} (B)

Khi đó A' = (0;2), B' = (1;-1). Vậy d' có phương trình = hay 3x + y -2 =0

Cách 2:

Gọi M'(x', y') là ảnh của M (x;y) qua phép đối xứng trục Oy. Khi đó x' = -x và y' = y. Ta có M thuộc d ⇔ 3x-y+2 =0 ⇔ -3x' - y' + 2=0 ⇔ M' thuộc đường thẳng d' có phương trình 3x + y - 2 = 0