K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2022

Tọa độ A' là:

\(\left\{{}\begin{matrix}x=-2+3=1\\y=3-2=1\end{matrix}\right.\)

Lấy B(0;-2) thuộc (d)

=>Tọa độ B' là: \(\left\{{}\begin{matrix}x=0+3=3\\y=-2-2=-4\end{matrix}\right.\)

Thay x=3 và y=-4 vào (d'): 4x+3y+c=0, ta được:

c+12-12=0

=>c=0

(C): (x-3)^2+(y-1)^2=9

=>R=3 và I(3;1)

=>I'(5;-5)

=>(C'): (x-5)^2+(y+5)^2=9

NV
21 tháng 12 2020

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc d \(\Rightarrow x+3y+1=0\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên thì \(M'\in d'\) với d' là ảnh của d

\(\left\{{}\begin{matrix}x'=x+3\\y'=y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-3\\y=y'+2\end{matrix}\right.\)

Thế vào (1):

\(x'-3+3\left(y'+2\right)+1=0\)

\(\Leftrightarrow x'+3y'+4=0\)

Vậy pt ảnh có dạng \(x+3y+4=0\)

24 tháng 2 2019

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

c) Đường thẳng d có vecto pháp tuyến là n(1;-2) nên 1 vecto chỉ phương của d là(2; 1)

=> Vecto v không cùng phương với vecto chỉ phương của đường thẳng d

=> Qua phép tịnh tiến v biến đường thẳng d thành đường thẳng d’ song song với d.

Nên đường thẳng d’ có dạng : x- 2y + m= 0

Lại có B(-1; 1) d nên B’(-2;3) d’

Thay tọa độ điểm B’ vào phương trình d’ ta được:

-2 -2.3 +m =0 ⇔ m= 8

Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0

5 tháng 4 2017

13 tháng 12 2021

Chọn C

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 1:

Lấy $M(x,y)\in (d)$. $M'(x',y')=T_{\overrightarrow{v}}(M)$

\(\left\{\begin{matrix} x'-x=2\\ y'-y=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'-2\\ y=y'+1\end{matrix}\right.\)

Ảnh của $d$ qua phép tịnh tiến theo vecto $\overrightarrow{v}$ có dạng:

$3(x'-2)-2(y'+1)+1=0$

$\Leftrightarrow 3x'-2y'-7=0$

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 2:

$M(x,y)$ là 1 điểm thuộc đường tròn $(C)$.

Lấy $M'(x',y')$ là 1 điểm thuộc $(C')$ là ảnh của $(C)$ qua $\overrightarrow{v}$

Khi đó, $M'=T_{\overrightarrow{v}}(M)

\(\Rightarrow \left\{\begin{matrix} x'-x=-3\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+3\\ y=y'-5\end{matrix}\right.\)

PTĐTr $(C')$ có dạng:

$(x'+3)^2+(y'-5)^2-4(x'+3)+6(y'-5)+5=0$

$\Leftrightarrow x'^2+y'^2+2x'-4y'-3=0$

21 tháng 11 2021

Gọi M N, lần lượt là ảnh của các điểm A(3;5), B(-1;1) qua phép tịnh tiến theo véc-tơ v=(-1;2) . Tính độ dài MN.

                     Giải

Phép tịnh tiến theo vecto v biến điểm A thành điểm M là:

\(\left\{{}\begin{matrix}x_M=x_A+x_v=3-1=2\\y_M=y_A+y_v=5+2=7\end{matrix}\right.\)

=> M (2,7).

Phép tịnh tiến theo vecto v biến điểm B thành điểm N là:

\(\left\{{}\begin{matrix}x_N=x_B+x_v=-1-1=-2\\y_N=y_B+y_v=1+2=3\end{matrix}\right.\)

=> N (-2,3).

Độ dài vecto MN bằng: \(\sqrt{\left(x_N-x_M\right)^2+\left(y_N-y_M\right)^2}=\)\(4\sqrt{2}\)

21 tháng 11 2021

cảm ơn b nha

 

14 tháng 11 2019

Đáp án D