K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra:

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b)

undefined

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm.

31 tháng 3 2017

a) (hình bên)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b) ( hình 1.26)

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm

2 tháng 6 2017

Giải bài 1 trang 23 sgk Hình học 11 | Để học tốt Toán 11

+ Chứng minh hoàn toàn tương tự ta được

Giải bài 1 trang 23 sgk Hình học 11 | Để học tốt Toán 11

b. ΔA1B1C1 là ảnh của ΔABC qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc –90º và phép đối xứng qua trục Ox.

⇒ ΔA1B1C1 là ảnh của ΔA’B’C’ qua phép đối xứng trục Ox.

⇒ A1 = ĐOx(A’) ⇒ A1(2; -3)

B1 = ĐOx(B’) ⇒ B1(5; -4)

 

C1 = ĐOx(C’) ⇒ C1(3; -1).

a) + Ta có:

Giải bài 1 trang 23 sgk Hình học 11 | Để học tốt Toán 11

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

30 tháng 5 2017

a)
Qua phép đối xứng trục Oy điểm \(M\left(1;1\right)\) biến thành điểm \(M'\left(x;y\right)\) có tọa độ là: \(\left\{{}\begin{matrix}x'=-x=-1\\y'=y=1\end{matrix}\right.\).
Suy ra: \(M'\left(-1;1\right)\).
Qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}\left(2;0\right)\) điểm M' biến thành điểm \(A\left(x_A;y_A\right)\) là:\(\left\{{}\begin{matrix}x_A=-1+2=1\\y_A=0+1=1\end{matrix}\right.\).
Suy ra: \(A\left(1;1\right)\equiv M\) là điểm cần tìm.
b) Gọi C là ảnh của điểm M qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}\)
là: \(\left\{{}\begin{matrix}x_C=2+1=3\\y_C=0+1=1\end{matrix}\right.\). Suy ra: \(C\left(3;1\right)\)
\(M''=Đ_{Oy}\left(C\right)\) nên \(\left\{{}\begin{matrix}x_{M''}=-x_C=-3\\y_{M''}=y_C=1\end{matrix}\right.\). Suy ra: \(M''\left(-3;1\right)\).

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

I' = {V_{(O,3)}}^{} (I) = (3; -9), I'' = {D_{Ox}}^{} (I') = ( 3;9). Đường tròn phải tìm có phương trình (x-3)^{2} + (y-9)^{2} = 36.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng