K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2020

\(\overrightarrow{BC}=\left(-4;3\right)\Rightarrow\) đường thẳng BC nhận \(\left(3;4\right)\) là 1 vtpt

Phương trình BC

\(3\left(x-3\right)+4\left(y+2\right)=0\Leftrightarrow3x+4y-1=0\)

Do \(AH\perp BC\) nên AH nhận \(\left(-4;3\right)\) là 1 vtpt

Phương trình AH:

\(-4\left(x-1\right)+3\left(y-2\right)=0\Leftrightarrow-4x+3y-2=0\)

Gọi M là trung điểm AB \(\Rightarrow M\left(2;0\right)\Rightarrow\overrightarrow{CM}=\left(3;-1\right)\Rightarrow\) đường thẳng CM nhận \(\left(1;3\right)\) là 1 vtpt

Phương trình CM:

\(1\left(x-2\right)+3\left(y-0\right)=0\Leftrightarrow x+3y-2=0\)

Khoảng cách từ A đến delta:

\(d\left(A;\Delta\right)=\frac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=\frac{10}{5}=2\)

30 tháng 3 2021

undefined

30 tháng 3 2021

Làm hơi lộn xộn tí, ráng nhìn :v

AH
Akai Haruma
Giáo viên
22 tháng 6 2020

Lời giải:

1.

$\overrightarrow{BC}=(2,4)\Rightarrow \overrightarrow{n_{BC}}=(-4,2)$

PTĐT chứa cạnh $BC$ là:

$-4(x-x_B)+2(y-y_B)=0\Leftrightarrow -2(x-4)+(y-3)=0$

$\Leftrightarrow -2x+y+5=0$

PT đường cao $AH$ nhận $\overrightarrow{BC}=(2,4)$ là vecto pháp tuyến nên có dạng:

$2(x-x_A)+4(y-y_A)=0$

$\Leftrightarrow x-2+2(y-1)=0\Leftrightarrow x+2y-4=0$

2.

Tọa độ điểm $G$:

$x_G=\frac{x_A+x_B+x_C}{3}=4$

$y_G=\frac{y_A+y_B+y_C}{3}=\frac{11}{3}$

Do $(G)$ tiếp xúc với $BC$ nên $R=d(G,BC)$

Có: $d(G,BC)=\frac{|-2x_G+y_G+5|}{\sqrt{(-2)^2+1^2}}=\frac{2\sqrt{5}}{15}$

Vậy PTĐTr cần tìm là: $(x-4)^2+(y-\frac{11}{3})^2=\frac{4}{45}$