Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình đường thẳng AB có dạng \(y=ax+b\)
Thay tọa độ A; B vào phương trình ta được:
\(\left\{{}\begin{matrix}3a+b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{4}\\b=\dfrac{13}{4}\end{matrix}\right.\)
hay phương trình AB: \(y=\dfrac{5}{4}x+\dfrac{13}{4}\)
Thế tọa độ C vào phương trình AB:
\(-3=0.\dfrac{5}{4}+\dfrac{13}{4}\Leftrightarrow-3=\dfrac{13}{4}\) (không thỏa mãn)
Vậy C không thuộc AB hay 3 điểm A, B, C không thẳng hàng
sao a=5/4 và b=13/4 v ạ .Có thể giải ra cụ thể cho e với đc kh ạ
ta có độ dài \(\hept{\begin{cases}AB=2\sqrt{2}\\BC=4\sqrt{2}\\CA=6\sqrt{2}\end{cases}\Rightarrow AB+BC=CA}\) vậy nên 3 diểm này thẳng hàng
Xét A có: x=1 ; y=-1
=> a=y/x = -1/1 =-1
Xét B có: x=2 ; y=1
=> a=y/x=1/2=0.5
Xét c có : x=4 ; y=5
=> a=y/x=5/4=1.25
Vì a khác nhau nên A;B;C không thẳng hàng
Bạn tìm đường thẳng đi qua 2 điểm A và B là \(\frac{x-x_a}{x_b-x_a}=\frac{y-y_a}{y_b-y_a}\)rồi thay tọa độ điểm C vào thấy k thỏa mãn phương trình đường thẳng thì => 3 điểm này k thẳng hàng
Gọi pt đường thẳng AB có dạng y =ax + b
Tọa độ các điểm A ; B thỏa mãn pt y = ax + b nên ta có hpt :
3 = 2a + b
-3 = -a + b
.....
Thay từng tọa độ vào ta được:
$A.(0;3) \Rightarrow 2.0-3=3$ (loại)
$B.(2;2) \Rightarrow 2.2-2=3$ (loại)
$C.(1;3) \Rightarrow 2.1-3=3$ (loại)
$D.(5;0) \Rightarrow 2.5-0=3$ (loại)
Không có đáp án đúng