Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)
Lời giải:
$I$ là trung điểm $AB$ nên:
\(\left\{\begin{matrix}
\frac{x_A+x_B}{2}=x_I\\
\frac{y_A+y_B}{2}=y_I\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x_B=2x_I-x_A\\
y_B=2y_I-y_A\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x_B=2.0-1=-1\\ y_B=2(-2)-0=-4\end{matrix}\right.\)
Vậy $B(-1,-4)$
a: \(2\cdot\overrightarrow{AB}=\left(6;-16\right)\)
\(\overrightarrow{u}=2\cdot\overrightarrow{AB}-7\cdot\overrightarrow{i}\)
=(6-7;-16)=(-1;-16)
b: Gọi (d): y=ax+b là phương trình (AB)
Theo đề, ta có hệ:
-2a+b=5 và a+b=-3
=>a=-8/3; b=-1/3
=>(d): y=-8/3x-1/3
Khi y=0 thì -8/3x-1/3=0
=>-8/3x=1/3
=>x=-1/3:8/3=-1/3x3/8=-1/8
Vậy: Tọa độ giao điểm của (AB) với trục Ox là (-1/8;0)
Gọi M là trung điểm AB
\(\Rightarrow\left\{{}\begin{matrix}x_M=\frac{x_A+x_B}{2}=\frac{1+0}{2}=\frac{1}{2}\\y_M=\frac{y_A+y_B}{2}=\frac{0-2}{2}=-1\end{matrix}\right.\)
\(\Rightarrow M\left(\frac{1}{2};-1\right)\)
Gọi I là TĐ AB
\(\Rightarrow\left\{{}\begin{matrix}x_I=\frac{x_A+x_B}{2}\\y_I=\frac{y_A+y_B}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\frac{1+0}{2}\\y_I=\frac{0-2}{2}\end{matrix}\right.\Rightarrow I\left(\frac{1}{2};-1\right)\)
Áp dụng công thức trung điểm: \(\left\{{}\begin{matrix}x_C=2x_I-x_D=4\\y_C=2y_I-y_D=\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow C\left(4;\dfrac{7}{2}\right)\)
Gọi d là đường thẳng qua C và vuông góc \(\Delta\Rightarrow d\) nhận (1;1) là 1 vtpt
Phương trình d:
\(1\left(x-4\right)+1\left(y-\dfrac{7}{2}\right)=0\Leftrightarrow x+y-\dfrac{15}{2}=0\)
Gọi E là giao điểm d và \(\Delta\Rightarrow\) tọa độ E là nghiệm:
\(\left\{{}\begin{matrix}x-y+1=0\\x+y-\dfrac{15}{2}=0\end{matrix}\right.\) \(\Rightarrow E\left(\dfrac{13}{4};\dfrac{17}{4}\right)\)
Gọi F là điểm đối xứng C qua \(\Delta\Rightarrow E\) là trung điểm CF
\(\Rightarrow\left\{{}\begin{matrix}x_F=2x_E-x_C=\dfrac{5}{2}\\y_F=2y_E-y_C=5\end{matrix}\right.\) \(\Rightarrow F\left(\dfrac{5}{2};5\right)\)
Do \(\Delta\) là phân giác BAC \(\Rightarrow F\in\) đường thẳng AB
\(\overrightarrow{CD}=\left(-1;-2\right)\), do AB song song DC nên đường thẳng AB nhận (2;-1) là 1 vtpt
Phương trình AB:
\(2\left(x-\dfrac{5}{2}\right)-1\left(y-5\right)=0\Leftrightarrow2x-y=0\)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+1=0\\2x-y=0\end{matrix}\right.\) \(\Rightarrow A\left(1;2\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}=-\overrightarrow{CD}=\left(1;2\right)\Rightarrow\left\{{}\begin{matrix}x_B=x_A+1=2\\y_B=y_A+2=4\end{matrix}\right.\)
\(\Rightarrow B\left(2;4\right)\)
Lời giải:
Tọa độ trung điểm $M$ của $AB$ là:
\(\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)=\left(\frac{2+0}{2}; \frac{5+(-7)}{2}\right)=(1;-1)\)
Dạ cái này đâu có chia cho 2 đâu ạ