\(\frac{x+2}{1}=\frac{y-1}{1}=\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Hoành độ giao điểm của (d) và (P) là nghiệm của pt

\(kx+\frac{1}{2}=\frac{1}{2}x^2\)

\(\Leftrightarrow x^2-2kx-1=0\left(1\right)\)

Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt 

Khi đó: \(\Delta'>0\)

\(\Leftrightarrow k^2+1>0\)(Luôn đúng)

Theo Vi-ét ta có: xA + xB = 2k

                          xA . xB = -1

Vì \(A;B\in\left(P\right)\)

\(\Rightarrow\hept{\begin{cases}y_A=\frac{1}{2}x_A^2\\y_B=\frac{1}{2}x_B^2\end{cases}}\)

Gọi I(xI ; yI) là trung điểm AB

Khi đó: \(x_I=\frac{x_A+x_B}{2}=\frac{2k}{2}=k\)

         \(y_I=\frac{y_A+y_B}{2}=\frac{x^2_A+x_B^2}{4}=\frac{\left(x_A+x_B\right)^2-2x_Ax_B}{4}=\frac{4k^2+2}{4}=k^2+\frac{1}{2}\)

Do đó: \(y_I=x_I^2+\frac{1}{2}\)

Nên I thuộc \(\left(P\right)y=x^2+\frac{1}{2}\)

Vậy ...............

P/S: nếu bạn thắc mắc về \(\left(P\right)=x^2+\frac{1}{2}\)thì mình sẽ giải thích

Ở cấp 2 thì ta chỉ được gặp dạng (P) y = ax2 có đỉnh trùng với gốc tọa độ

Nhưng đây chỉ là dạng đặc biệt của nó thôi . Còn dạng chuẩn là (P) y = ax2 + bx + c . (P) này có đỉnh không trùng với gốc tọa độ

15 tháng 11 2020

4a) Sử dụng bất đẳng thức AM-GM ta có :

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)

Đẳng thức xảy ra khi x = y > 0

NV
7 tháng 10 2019

Gọi tất cả các pt đường thẳng có dạng \(y=ax+b\)

a/ Do đường thẳng cắt trục tung tại điểm có tung độ bằng 2 và đi qua B(2;-1) nên ta có:

\(\left\{{}\begin{matrix}2=0.a+b\\-1=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+2\)

b/ Do .... nên ta có:

\(\left\{{}\begin{matrix}3=0.a+b\\a=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{3}x+3\)

c/ Pt hoành độ giao điểm của 2 đường thẳng:

\(5x-3=-2x+4\Rightarrow7x=7\Rightarrow x=1\Rightarrow y=2\Rightarrow\left(1;2\right)\)

Do... nên: \(\left\{{}\begin{matrix}2=1.a+b\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{2}\\b=\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+\frac{7}{2}\)

d/ Do... nên:

\(\left\{{}\begin{matrix}-5=-2a+b\\4=1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Rightarrow y=3x+1\)

15 tháng 1 2018

2. Có : 1/x + 1/y + 1/z = 0

=> 1 + x/y + x/z = 0 => x/y + x/z = -1

Tương tự : y/x + y/z = -1 ; z/x + z/y = -1

=> x/y + x/z + y/x + y/z + z/x + z/y = -3

Lại có : 1/x+1/y+1/z = 0

<=> xy+yz+zx/xyz = 0

<=> xy+yz+zx = 0

Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)

           = xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z

           = xy/z^2+xz/y^2+xy/z^2-3

=> xy/z^2+xz/y^2+xy/z^2 = 3

=> ĐPCM

Tk mk nha

Áp dụng BĐT Cô si ta có: 

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\)

\(\Rightarrow b+c\ge4a.4bc=16abc\)

15 tháng 8 2017

3) \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)

\(\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(a+c\right)}{a+c}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+b+c\)

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

Vậy: \(P=0\)

15 tháng 8 2017

Thank youeoeo

18 tháng 10 2017

đặt \(\hept{\begin{cases}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\\z+\frac{1}{z}=c\end{cases}}\)=> \(\hept{\begin{cases}x^2+\frac{1}{x^2}=a^2-2\\y^2+\frac{1}{y^2}=b^2-2\\z^2+\frac{1}{z^2}=c^2-2\end{cases}}\) 

thay vào đề ta đc: \(\hept{\begin{cases}a+b+c=\frac{51}{4}\\a^2+b^2+c^2-6=\frac{771}{16}=>a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)

mình chưa học giải hpt nên đến đây k biết lm đc nữa k

=))

18 tháng 10 2017

tìm mối quan hệ giữa hai kết quả rồi bất đẳng thức 

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha