K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

27 tháng 8 2018

Đáp án A

Vì mặt phẳng (P) đi qua A, B nên

3 a - 2 b + 6 c - 2 = 0 b = 2 ⇔ a = 2 - 2 c b = 2 ⇒ ( P ) :   ( 2 - 2 c ) x + 2 y + c z = 0

Khoảng cách từ tâm I (1;2;3) của (S) đến (P) là:

d(I,(P))= ( 2 - 2 c ) + 2 . 2 + c . 3 - 2 ( 2 - 2 c ) 2 + 2 2 + c 2 = c + 4 5 c 2 - 8 c + 8

Khi đó bán kính của đường tròn giao tuyến là: 

r= 25 - ( c + 4 ) 2 5 c 2 - 8 c + 8 = 124 c 2 - 208 c + 184 5 c 2 - 8 c + 8

Để r đạt giá trị nhỏ nhất thì hàm số

f(t)= 124 t 2 - 208 t + 184 5 t 2 - 8 t + 8 trên [1;+ ∞ ) phải nhỏ nhất

Ta có: f'(t)= 48 t 2 + 144 t - 192 ( 5 t 2 - 8 t + 8 ) 2 ,

f'(t)=0 ⇔

Khi đó hàm số đạt giá trị nhỏ nhất tại t=1 ⇒ c=1

Ta có: T=a+b+c=2-2c+2=4-c=3

28 tháng 7 2018

Đáp án A.

29 tháng 6 2017

Đáp án B

Phương pháp:

- Đưa phương trình mặt phẳng (P) về dạng chỉ còn 1 tham số.

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S).

Cách giải:

( S ) :   x - 1 2 + y - 2 2 + z - 3 2 = 25  có tâm  I(1;2;3) và bán kính  R = 5

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất  <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S)

Ta có 

Ta có:

(*) có nghiệm 

Khi đó T =a+b+c =2-2c+2+c=4-1 =3

4 tháng 7 2018

Đáp án A

Phương pháp:

+) Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất thì   d ( I ; ( P ) ) m a x

+) Gọi H và K lần lượt là chân đường vuông góc của I trên (P) và trên đường thẳng AB. Ta có: HI ≤ IK

 

Cách giải:

Khi đó mặt phẳng (P) có dạng :  

Mặt cầu (S) có tâm I(1;2;3), bán kính R = 5

Gọi  H    K  lần  lượt    chân  đường  vuông  góc  của  I  trên  (P)    trên đường thẳng AB. Ta có :  HIIK

Để  mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất thì


=>Phương trình đường thẳng AB: 

 

là 1 VTPT của (P)

=>  I H → và vec tơ pháp tuyến  n ( P ) → = ( 2 - 2 c ; 2 ; c )   cùng phương

25 tháng 11 2017

Mặt cầu (S) có tâm I (1;-2;3) và bán kính R= 33.

Vì (α): ax+by-z+c=0 đi qua hai điểm A (0; 0; -4), B (2; 0; 0) nên c = -4 và a = 2.

Suy ra (α): 2x+by-z-4=0.

Đặt IH = x, với 0 < x < 33 ta có

Thể tích khối nón là

26 tháng 10 2018

Chọn C

Gọi (P) là mặt phẳng thỏa mãn bài toán.

Ta có A (1; 0; 0) (S) => nếu tồn tại (P) thì (P) tiếp xúc với (S) tại A.

Ta thấy A (0; 0 ; 2) (P) duy nhất một mặt phẳng thỏa mãn bài toán.

Ghi chú: Bài toán này thường thường thì sẽ có hai mặt phẳng thỏa mãn, nhưng với số liệu của bài này thì chỉ có một mặt phẳng thỏa mãn bài toán.

23 tháng 8 2017

Chọn A

Gọi  là một vec tơ pháp tuyến của mặt phẳng (P).

Theo đề bài ta có mặt phẳng (P) vuông góc với mặt phẳng (α): x-y+z-4=0 nên ta có phương trình a-b+c=0 ó b=a+c 

Phương trình mặt phẳng (P) đi qua A(0;1;2) và có véc tơ pháp tuyến  là ax+ (a+c) (y-1)+c (z-2) =0

Khoảng cách từ tâm I (3;1;2) đến mặt phẳng (P) là 

Gọi r là bán kính của đường tròn giao tuyến giữa mặt cầu (S) và mặt phẳng (P) ta có r²=16-h² ;  r nhỏ nhất khi h lớn nhất.

Dấu “=” xảy ra khi a = -2c. => một véc tơ pháp tuyến là => phương trình mặt phẳng (P) là 2x+y-z+1=0.

Vậy tọa độ giao điểm M của (P) và trục x'Ox là: