Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : ADCˆ=ADEˆ+EDCˆADC^=ADE^+EDC^
=> 90O=ADEˆ+15O90O=ADE^+15O
=> ADEˆ=75OADE^=75O
Tương tự ta cũng có : BCEˆ=75oBCE^=75o
Xét ΔADEΔADE và ΔBCEΔBCE có :
AD = BC (do ABCD à hình vuông)
ADEˆ=BCEˆ(=75o)ADE^=BCE^(=75o)
DE=ECDE=EC (do tam giác ECD cân tại E- gt)
=> ΔADEΔADE = ΔBCEΔBCE (c.g.c)
=> AE = BE (2 cạnh tương ứng)
Mà : AD = AE
=> ΔADEΔADE cân tại A
Xét ΔADEΔADE ta có :
ADEˆ=AEDˆ=75oADE^=AED^=75o (tính chất tam giác cân)
=> DAEˆ=180O−(ADEˆ+AEDˆ)DAE^=180O−(ADE^+AED^)
=> DAEˆ=180O−2.75O=30ODAE^=180O−2.75O=30O
Chứng minh tương tự ta có : CBEˆ=30oCBE^=30o
Có : ABEˆ=ABCˆ−CBEˆ=90O−30O=60OABE^=ABC^−CBE^=90O−30O=60O
BAEˆ=BADˆ−EADˆ=90O−30O=60OBAE^=BAD^−EAD^=90O−30O=60O
Xét ΔABEΔABE có :
ABEˆ+BAEˆ+AEBˆ=180OABE^+BAE^+AEB^=180O
=> AEBˆ=180O−2.60O=60OAEB^=180O−2.60O=60O
Thấy : ABEˆ=BAEˆ=AEBˆ=60oABE^=BAE^=AEB^=60o
=> ΔABEΔABE là tam giác đều (đpcm)
Tự vẽ hình nha bạn; chú thích ở dưới nha bạn
Trên AC lấy điểm K sao cho AD=AK
=>t/gADK vuông cân tại A
=>ADK^=AKD^=45*
Mà DKA^+DKC^=180*
Hay 45*+DKC^=180*
=>DKC^=135*
Ta có:EDC^+ADC^+EDB^=180*
Hay 90*+ADC^+EDB^=180*
=>ADC^+EDB^=90*(1)
Xét t/g vuông ADC có:ADC^+DCA^=90*(phụ nhau)(2)
Từ (1) và (2)=>ADC^+EDB^=ADC^+DCA^(=90*)
=>EDB^=DCA^
Vì AD=AK,AB=AC(vì t/g ABC cân tại A)
=>AB-AD=AC-AK
=>BD=KC
Hay EDB^=DCK^
Xét t/g EBD và t/g DKC có:
EDB^=DCK^(cmt)
BD=KC(cmt)
EBD^=DKC^(=135*)
=>t/g EBD=t/g DKC(g.c.g)
=>DE=DC(2 cạnh tương ứng)
Vì t/g DEC vuông tại D(gt) và DE=DC
=>t/g DEC vuông cân tại D(đpcm)
ps:t/g là tam giác,* là độ,^ là góc
Lấy F thuộc AC sao cho AD = AF. Khi đó tam giác ADF vuông cân ở A ==> DFAˆ=450→DFCˆ=1350
Ta có:
BDEˆ=1800−EDCˆ−ADCˆ=1800−900−ADCˆ=900−ADCˆ
ACDˆ=900−ADCˆ (vì tam giác ADC vuông ở A)
Suy ra ACDˆ=BDEˆ
Mặt khác:
BD = AB - AD
CF = AC - AF
AB = AC, AD = AF
Nên BD = CF.
Xét tam giác BDE và tam giác FCD:
BD = FC
BDEˆ=FCDˆ
EBDˆ=DFCˆ(=1350)
Suy ra ΔBDE = ΔFCD (g.c.g) ==> DE = DC
Mà tam giác EDC vuông ở D.
Suy ra tam giác EDC vuông cân ở D.
Xét tgiac vuông AKD và tam giác vuông AED, có
Góc AKD= góc AED =99°
Góc KAD=góc EAD ( tia phân giác)
AD là cạnh chung
=> Tam giác AKD= tam giác AED ( cạnh huyền góc nhọn kề)
=> DK= DE ( 2 canh tương ứng)
=> Tam giác DKE cân tại D ( định nghĩa)
a) Xét tam giác ABC cân tại A
có: \(AI\perp BC⋮I\)(gt)
=> AI là đường trung tuyến của BC ( tính chất của tam giác cân)
=> BI = CI ( định lí đường trung tuyến)
=> I là trung điểm của BC
b) Xét tam giác ABC cân tại A
có: AI là đường trung tuyến của BC ( phần a)
=> AI là đường phân giác của góc A ( tính chất của tam giác cân)
=> góc BAI = góc CAI ( tính chất tia phân giác)
Xét tam giác AEI và tam giác AFI
có: AE = AF (gt)
góc BAI =góc CAI ( chứng minh trên)
AI là cạnh chung
\(\Rightarrow\Delta AEI=\Delta AFI\left(c-g-c\right)\)
=> EI = FI ( 2 cạnh tương ứng)
=> tam giác IEF cân tại I ( định lí tam giác cân)
c) ta có: \(E\in AB\)
=> AE + EB = AB (1)
ta có: \(F\in AC\)
=> AF + FC = AC (2)
mà AB =AC
Từ (1);(2) => AE + EB = AF + FC
=> EB = FC ( AE = AF)
Xét tam giác EBI và tam giác FCI
có: EB = FC ( chứng minh trên)
góc EBI = góc FCI ( gt)
BI = CI ( phần a)
\(\Rightarrow\Delta EBI=\Delta FCI\left(c-g-c\right)\)
mk ko bít kẻ hình trên này, nên ko kẻ đâu!
Ta có : ADCˆ=ADEˆ+EDCˆADC^=ADE^+EDC^
=> 90O=ADEˆ+15O90O=ADE^+15O
=> ADEˆ=75OADE^=75O
Tương tự ta cũng có : BCEˆ=75oBCE^=75o
Xét ΔADEΔADE và ΔBCEΔBCE có :
AD = BC (do ABCD à hình vuông)
ADEˆ=BCEˆ(=75o)ADE^=BCE^(=75o)
DE=ECDE=EC (do tam giác ECD cân tại E- gt)
=> ΔADEΔADE = ΔBCEΔBCE (c.g.c)
=> AE = BE (2 cạnh tương ứng)
Mà : AD = AE
=> ΔADEΔADE cân tại A
Xét ΔADEΔADE ta có :
ADEˆ=AEDˆ=75oADE^=AED^=75o (tính chất tam giác cân)
=> DAEˆ=180O−(ADEˆ+AEDˆ)DAE^=180O−(ADE^+AED^)
=> DAEˆ=180O−2.75O=30ODAE^=180O−2.75O=30O
Chứng minh tương tự ta có : CBEˆ=30oCBE^=30o
Có : ABEˆ=ABCˆ−CBEˆ=90O−30O=60OABE^=ABC^−CBE^=90O−30O=60O
BAEˆ=BADˆ−EADˆ=90O−30O=60OBAE^=BAD^−EAD^=90O−30O=60O
Xét ΔABEΔABE có :
ABEˆ+BAEˆ+AEBˆ=180OABE^+BAE^+AEB^=180O
=> AEBˆ=180O−2.60O=60OAEB^=180O−2.60O=60O
Thấy : ABEˆ=BAEˆ=AEBˆ=60oABE^=BAE^=AEB^=60o
=> ΔABEΔABE là tam giác đều (đpcm)
CHÚC MAY MẮN
hình tự vẽ
Vì EDC cân nên:
EDC=ECD=15
Ta có: ADE+EDC=90
=> ADE =90-15=75
Tương tự, ta có: BCE+ECD=90
=> BCE =90-15=75
Xét 2 tam giác AED và BEC có:
-góc AED=góc BEC ( đối đỉnh)
-ED=EC( tam giác EDC cân)
-góc ADE=goscBCE(cmt)
suy ra hai tam giác AED và BEC bằng nhau
==>AE=BE(2 cạnh tương ứng)
xét tam giác AEB có AE=AB=> tam giác AEB cân(đpcm)