K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Trên đường thẳng \(\Delta \) lấy điểm \(B\) khác \(A\).

Kẻ \(AH \bot \left( P \right),BK \bot \left( P \right)\left( {H,K \in \left( P \right)} \right)\)

\( \Rightarrow ABKH\) là hình chữ nhật \( \Rightarrow AH = BK\)

\( \Rightarrow d\left( {A,\left( P \right)} \right) = d\left( {B,\left( P \right)} \right)\)

Vậy khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\) không phụ thuộc vào vị trí của điểm \(A\) trên đường thẳng \(\Delta \).

b) Khoảng cách đó gợi nên khái niệm khoảng cách giữa đường thẳng và mặt phẳng song song.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Khoảng cách đó gợi nên khái niệm khoảng cách giữa hai mặt phẳng song song.

b)

Trên mặt phẳng \(\left( P \right)\) lấy điểm \(J\) khác \(I\).

Kẻ \(JH \bot \left( Q \right)\left( {H \in \left( Q \right)} \right)\)

\( \Rightarrow HKIJ\) là hình chữ nhật \( \Rightarrow IK = JH\)

\( \Rightarrow d\left( {I,\left( Q \right)} \right) = d\left( {J,\left( Q \right)} \right)\)

Vậy khoảng cách \(IK\) từ điểm \(I\) đến mặt phẳng \(\left( Q \right)\) không phụ thuộc vào vị trí của điểm \(I\) trong mặt phẳng \(\left( P \right)\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Trên đường thẳng \(\Delta \) lấy điểm \(B\) khác \(A\).

Kẻ \(AH \bot \Delta ',BK \bot \Delta '\left( {H,K \in \Delta '} \right)\)

\(ABKH\) là hình chữ nhật \( \Rightarrow AH = BK\)

\( \Rightarrow d\left( {A,\Delta '} \right) = d\left( {B,\Delta '} \right)\)

Vậy khoảng cách từ điểm \(A\) đến đường thẳng \(\Delta '\) không phụ thuộc vào vị trí của điểm \(A\) trên đường thẳng \(\Delta \).

b) Khoảng cách đó gợi nên khái niệm khoảng cách giữa hai đường thẳng song song.

14 tháng 8 2023

Cột gỗ vuông góc với cả hai mặt phẳng song song (P) và (Q)

Suy ra khoảng cách giữa hai mặt phẳng (P) và (Q) bằng độ dài cột gỗ là 4,2m

a: \(a\perp\left(Q\right)\)

b: Hai mặt phẳng (P) và (Q) có vuông góc với nhau

31 tháng 3 2017

a) Để tính khoảng cách từ điểm O đến đường thẳng Δ không đi qua O, ta xác định mặt phẳng (O; Δ) và trong mặt phẳng này kẻ OH ⊥ Δ. Độ dài OH chính là khoảng cách từ O đến Δ.

b) Để tính khoảng cách giữa đường thẳng a và mp(P) song song với (P), ta lấy một điểm M bất kì thuộc đường thẳng a. Khoảng cách MN từ điểm M đến mp(P) chính là khoảng cách giữa đường thẳng và mp(P) song song với a.

c) Để tính khoảng cách giữa hai mp(P) và (P') song song với nhau, ta lấy một điểm M thuộc (P) và tìm khoảng cách MH từ điểm M đến mp(P').

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) • Ta có: M ∈ b và (P) ∩ (Q) = b;

Suy ra M ∈ (P).

Mà M ∈ (M, a)

Do đó M là giao điểm của (P) và (M, a).

Lại có b’ = (P) ∩ (M, a)

Suy ra đường thẳng b’ đi qua M.

Tương tự ta cũng chứng minh được b’’ đi qua điểm M.

• Ta có: a // (P);

             a ⊂ (M, a)

             (M, a) ∩ (P) = b’

Do đó a // b’.

Tương tự ta cũng có a // b’’.

Do đó b’ // b’’.

Mặt khác: (P) ∩ (Q) = b;

                 (M, a) ∩ (P) = b’;

                 (M, a) ∩ (Q) = b’’;

                 b // b’’.

Do đó b // b’ // b’’.

Mà cả ba đường thẳng cùng đi qua điểm M nên ba đường thẳng này trùng nhau.

b) Vì a // b’ nên a // b (do b ≡ b’).

22 tháng 8 2023

tham khảo

Ta có:\(a//\left(P\right)\)

         \(a//\left(Q\right)\)

        \(\left(P\right)\cap\left(Q\right)=b\)

Do đó theo hệ quả định lí \(2\) ta có \(a//b\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right)\\A{\rm{B}}\parallel C{\rm{D}}\\AB \subset \left( {SAB} \right)\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(AB\) và \(C{\rm{D}}\).

Chọn A.

16 tháng 5 2021

S A B C D H O K I L T

a) SA vuông góc với (ABCD) => SA vuông góc AD; hình thang ABCD vuông tại A => AD vuông góc AB

=> AD vuông góc (SAB), mà AD nằm trong (SAD) nên (SAB) vuông góc (SAD).

b) AD vuông góc (SAB), BC || AD => BC vuông góc (SAB) => B là hc vuông góc của C trên (SAB)

=> (SC,SAB) = ^CAB

\(SB=\sqrt{AS^2+AB^2}=\sqrt{2a^2+a^2}\)\(=a\sqrt{3}\)

\(\tan\widehat{CAB}=\frac{BC}{SB}=\frac{a}{a\sqrt{3}}=\frac{\sqrt{3}}{3}\)=> (SC,SAB) = ^CAB = 300.

c) T là trung điểm của AD, K thuộc ST sao cho AK vuông góc ST, BT cắt AC tại O, HK cắt AO tại I, AI cắt SC tại L.

BC vuông góc (SAB) => BC vuông góc AH, vì AH vuông góc SB nên AH vuông góc SC. Tương tự AK vuông góc SC

=> SC vuông góc (HAK) => SC vuông góc AI,AL. Lập luận tương tự thì AL,AI vuông góc (SCD).

Dễ thấy \(\Delta\)SAB = \(\Delta\)SAT, chúng có đường cao tương ứng AH và AK => \(\frac{HS}{HB}=\frac{KS}{KT}\)=> HK || BT || CD

=> d(H,SCD) = d(I,SCD) = IL (vì A,I,L vuông góc (SCD)) = \(\frac{IL}{AL}.AL=\frac{CO}{CA}.\frac{SI}{SO}.AL=\frac{1}{2}.\frac{SH}{SB}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}\)

\(=\frac{1}{2}.\frac{SA^2}{SA^2+SB^2}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}=\frac{1}{2}.\frac{2a^2}{2a^2+a^2}.\frac{a\sqrt{2}.a\sqrt{2}}{\sqrt{2a^2+2a^2}}=\frac{a}{3}\)

17 tháng 5 2021

undefined

undefined

 

 


 

 

Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) chứa \(a\) và cắt \(\left( P \right)\) theo giao tuyến \(b\) (Hình 10). Trong \(\left( Q \right)\), hai đường thẳng \(a,b\) có bao nhiều điểm chung?Cho ba mặt phẳng song song \(\left( P \right),\left( Q \right),\left( R \right)\) lần lượt cắt hai đường thăng \(a\) và \(a'\) tại các điểm \(A,B,C\) và \(A',B',C'\). Gọi \({B_1}\) là giao...
Đọc tiếp

Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) chứa \(a\) và cắt \(\left( P \right)\) theo giao tuyến \(b\) (Hình 10). Trong \(\left( Q \right)\), hai đường thẳng \(a,b\) có bao nhiều điểm chung?

Cho ba mặt phẳng song song \(\left( P \right),\left( Q \right),\left( R \right)\) lần lượt cắt hai đường thăng \(a\) và \(a'\) tại các điểm \(A,B,C\) và \(A',B',C'\). Gọi \({B_1}\) là giao điểm của \(AC'\) với \(\left( Q \right)\) (Hình 12).

a) Trong tam giác \(ACC'\), có nhận xét gì về mối liên hệ giữa \(\frac{{AB}}{{BC}}\) và \(\frac{{A{B_1}}}{{{B_1}C'}}\)?

b) Trong tam giác \(AA'C'\), có nhận xét gì về mối liên hệ giữa \(\frac{{A{B_1}}}{{{B_1}C'}}\) và \(\frac{{A'B'}}{{B'C'}}\)?

c) Từ đó, nếu nhận xét về mối liên hệ giữa các tỉ số \(\frac{{AB}}{{A'B'}},\frac{{BC}}{{B'C'}},\frac{{AC}}{{A'C'}}\).

1
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}\left( Q \right)\parallel \left( R \right)\\\left( {ACC'} \right) \cap \left( Q \right) = B{B_1}\\\left( {ACC'} \right) \cap \left( R \right) = CC'\end{array} \right\} \Rightarrow B{B_1}\parallel CC' \Rightarrow \frac{{AB}}{{BC}} = \frac{{A{B_1}}}{{{B_1}C'}}\left( 1 \right)\)

b) Ta có:

\(\left. \begin{array}{l}\left( P \right)\parallel \left( Q \right)\\\left( {AA'C'} \right) \cap \left( Q \right) = B{B_1}\\\left( {AA'C'} \right) \cap \left( P \right) = AA'\end{array} \right\} \Rightarrow B{B_1}\parallel AA' \Rightarrow \frac{{A{B_1}}}{{{B_1}C'}} = \frac{{A'B'}}{{B'C'}}\left( 2 \right)\)

c) Từ (1) và (2) suy ra \(\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}} \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AB + BC}}{{A'B' + B'C'}} = \frac{{AC}}{{A'C'}}\)

Vậy \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}}\).