Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình AB có dạng \(y=ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}5a+b=1\\-a+b=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b=\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow y=-\frac{2}{3}x+\frac{13}{3}\)
Thay tọa độ C vào phương trình AB thấy thỏa mãn \(\Rightarrow C\in AB\) hay A;B;C thằng hàng
\(S_{OAB}=\frac{1}{2}\left|\left(x_A-x_O\right)\left(y_B-y_O\right)-\left(x_B-x_O\right)\left(y_A-y_O\right)\right|\)
\(=\frac{1}{2}\left|5.5-\left(-1\right).1\right|=\frac{26}{2}=13\)
a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)
Do đường thẳng AB qua A và B nên ta có:
\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)
b. Thay tọa độ C vào pt AB:
\(-1=2.0-1\) (thỏa mãn)
\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng
Ta sẽ áp dụng công thức sau:
Cho 2 điểm A(x;y) và B(t;z) khi đó \(AB=\sqrt{\left(x-t\right)^2+\left(y-z\right)^2}\)
Khi đó ta dễ dàng tính được:
\(AB=\sqrt{\left(\frac{1}{2}-2\right)^2+\left(\frac{3}{2}-3\right)^2}=\frac{3\sqrt{2}}{2}\)
\(BC=\sqrt{\left(2-1\right)^2+\left(3-1\right)^2}=\sqrt{5}\)
\(CA=\sqrt{\left(\frac{1}{2}-1\right)^2+\left(\frac{3}{2}-1\right)^2}=\frac{\sqrt{2}}{2}\)
Mà \(AB^2+CA^2=\left(\frac{3\sqrt{2}}{2}\right)^2+\left(\frac{\sqrt{2}}{2}\right)^2=5=BC^2\)
=> Tam giác ABC vuông tại A
=> \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{\frac{3\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2}}{2}=\frac{3}{4}\left(dvdt\right)\)