K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

xem lại đầu bài đi bạn ơi,  phương trình đường thẳng sai rồi ...

29 tháng 5 2017

( d ) : y = 2mx+2

30 tháng 5 2017

Xét phương trình hoành độ giao điểm 

\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)

Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có

\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)

theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)

\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)

\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)

Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)

17 tháng 8 2017

Tam giac chưa vuông mà

14 tháng 3 2022

ĐK \(x_2\ge0;\)

Phương trình hoành độ giao điểm 

x2 = mx + m + 1

\(\Leftrightarrow x^2-mx-m-1=0\)

Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)

\(\Rightarrow\)Phương trình có nghiệm với mọi m

Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)

Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)

khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1

\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình 

Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)

\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm) 

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

25 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(\frac{1}{2}x^2-x-\frac{1}{2}m^2-m-1=0\)

\(\Leftrightarrow x^2-2x-m^2-2m-2=0\)

\(\Delta'=1-\left(-m^2-2m-2\right)=m^2+2m+3=\left(m+1\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2-2m-2\end{cases}}\)

Ta có \(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=68\)

\(\Leftrightarrow8-6\left(-m^2-2m-2\right)=68\)

\(\Leftrightarrow6m^2+12m-48=0\Leftrightarrow m=2;m=-4\)

26 tháng 3 2022

Xét Pt hoành độ.......

\(\dfrac{1}{2}x^2=x+\dfrac{1}{2}m^2+m+1\\ \Leftrightarrow x^2-2x-m^2-2m-2=0\left(1\right)\)

Để ... thì Δ'>0

1+m2+2m+2>0 ⇔(m+1)2+2>0 (Hiển nhiên)

Với mọi m thì (1) sẽ có 2 nghiệm x1; x2.

*) Theo Hệ thức Viet ta có: 

S=x1+x2=2 và P=x1x2= -m2-2m-2

*)Ta có: 

\(\text{x^3_1 ​ +x ^3_2 ​ =68\Leftrightarrow(x_1+x_2)(x_1}^2-x_1x_2+x_2^2\left(\right)=68\\ \)

⇔(x1+x2)[(x1+x2)2-2x1x2-x1x2 ]=68 ⇔2[22-3(-m2-2m-2)]=68

⇔3m2+6m-24=0⇔m=2 và m=-4 

KL: