Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 10:15=14:21
=>10/14=15/21; 15/10=21/14; 14/10=21/15
b: 2/3:1/4=2/3x4=8/3
16/9:16/24=16/9x24/16=8/3
Do đó: \(\dfrac{\dfrac{2}{3}}{\dfrac{1}{4}}=\dfrac{\dfrac{16}{9}}{\dfrac{16}{24}}\)
Suy ra: \(\dfrac{\dfrac{2}{3}}{\dfrac{16}{9}}=\dfrac{\dfrac{1}{4}}{\dfrac{16}{24}};\dfrac{\dfrac{1}{4}}{\dfrac{2}{3}}=\dfrac{\dfrac{16}{24}}{\dfrac{16}{9}};\dfrac{\dfrac{16}{9}}{\dfrac{2}{3}}=\dfrac{\dfrac{16}{24}}{\dfrac{1}{4}}\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Bài 1 : Ta thấy
\(\dfrac{10}{15}=\dfrac{2}{3};\dfrac{14}{21}=\dfrac{2}{3}\Rightarrow10:15=14:21\Rightarrow\dfrac{10}{15}=\dfrac{14}{21}\)
\(\dfrac{16}{\left(-4\right)}=-4;\dfrac{12}{\left(-3\right)}=-4\Rightarrow16:\left(-4\right)=12:\left(-3\right)\Rightarrow\dfrac{16}{\left(-4\right)}=\dfrac{12}{\left(-3\right)}=-4\)
\(\dfrac{\left(-5\right)}{15}=\dfrac{\left(-1,2\right)}{3,6}=-\dfrac{1}{3}\Rightarrow\left(-5\right):15=\left(-1,2\right):3,6\)
\(\dfrac{2}{3}:\dfrac{1}{4}=\dfrac{2}{3}.4=\dfrac{8}{3};\dfrac{16}{9}:\dfrac{16}{24}=\dfrac{16}{9}.\dfrac{24}{16}=\dfrac{8}{3}\)
\(\Rightarrow\left(\dfrac{2}{3}:\dfrac{1}{4}\right)=\left(\dfrac{16}{9}:\dfrac{16}{24}\right)=\dfrac{8}{3}\)
Bài 2 :
a) \(14.15=10.21\Rightarrow\dfrac{14}{10}=\dfrac{21}{15}=\dfrac{7}{5}\)
b) \(0,2.4,5=0,6.1,5\Rightarrow\dfrac{0,2}{0,6}=\dfrac{1,5}{4,5}=\dfrac{1}{3}\)
Các tỉ số bằng nhau là:
\(10:15=14:21< =\dfrac{2}{3}>;\dfrac{2}{3}:\dfrac{1}{4}=\dfrac{16}{9}=\dfrac{16}{24}< =\dfrac{8}{3}>;16:\left(-4\right)=12:\left(-3\right)< =-4>;-5:15=-1,2:3,6< =-\dfrac{1}{3}>\)
Bài 3:
1;3;9;27
=>lập được 4 tỉ lệ thức
1;9;27;243
=>Lập được 4 tỉ lệ thức
1;3;81;243
=>Lập được 4 tỉ lệ thức
Bài 2:
a: 6/8=24/x
=>24/x=3/4
=>x=32
b: Có thể lập được 4 tỉ lệ thức
giup mk voi cac ban oi
10:15 ; \(\dfrac{16}{9}\):\(\dfrac{16}{24}\) ; \(\dfrac{2}{3}\):\(\dfrac{1}{4}\) ; 16:(-4) ; 14:21 ; -5:15 ; 12:(-3) ; -1,2:3,6
10:15=\(\dfrac{2}{3}\) ;\(\dfrac{16}{24}\)=\(\dfrac{2}{3}\) ;16:(-4)=-4 ;14:21=\(\dfrac{2}{3}\) :-5:15=\(\dfrac{-1}{3}\) ;12:(-3)=-4
-1,2:3,6=\(\dfrac{-1}{3}\)
Ta có các tỉ lệ thức: \(\dfrac{10}{15}\)=\(\dfrac{16}{24}\)=\(\dfrac{14}{21}\)=\(\dfrac{2}{3}\) ;\(\dfrac{16}{-4}\)=\(\dfrac{12}{-3}\)=-4 ;\(\dfrac{-5}{15}\)=\(\dfrac{-1,2}{3,6}\)=\(\dfrac{-1}{3}\)