Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Liệt kê các phần tử của tập hợp �={�∈�∣ 2�2+3�+1=0 }A={x∈Z 2x2+3x+1=0 }
Ta có: 2�2+3�+1=0⇔[ �=−12 �=−1 2x2+3x+1=0⇔ x=−21 x=−1 .
Do đó: �={−1}A={−1}.
b) Cho hai tập hợp �={�∈�∣∣�∣>4}A={x∈R∣x∣>4} và �={�∈�∣−5≤�−1<5}B={x∈R−5≤x−1<5}. Xác định tập �=�\�X=B\A.
Ta có:
⚡∣�∣>4⇔[ �>4 �<−4⇒�=(−∞;−4)∪(4;+∞ )∣x∣>4⇔[ x>4x<−4⇒A=(−∞;−4)∪(4;+∞ ).
⚡−5≤�−1<5⇔−4≤�<6⇒�=[−4;6)−5≤x−1<5⇔−4≤x<6⇒B=[−4;6).
Suy ra �=�\�=[−4;4]X=B\A=[−4;4].
a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)
Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)
Ta có:
\(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\end{array} \right.\end{array}\)
Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).
b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{ - 3;0;1\} = B\)
\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\} = A\)
\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{ - 3;0;1\} = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)
Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{ - 2; - 1;0;1;2;3\} \)
Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\} = \{ - 2;3\} \)
Khi đó:
Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{ - 1;0;1;2\} \).
Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)
a) Nửa khoảng \(\left( {\left. { - 2\pi ;2\pi } \right]} \right.\)
b) \(\left\{ {x \in \mathbb{R}|\;\left| x \right| \le \sqrt 3 } \right\} = \left\{ {x \in \mathbb{R}|\; - \sqrt 3 \le x \le \sqrt 3 } \right\}\)
Đoạn \(\left[ {\left. { - \sqrt 3 ;\sqrt 3 } \right]} \right.\)
c) Khoảng \(\left( { - \infty ;0} \right)\)
d) \(\left\{ {x \in \mathbb{R}|\;1 - 3x \le 0} \right\} = \left\{ {x \in \mathbb{R}|\;x \ge \frac{1}{3}} \right\}\)
Nửa khoảng \(\left. {\left[ {\frac{1}{3}; + \infty } \right.} \right)\)
\(G = \{ x \in \mathbb{Z}|{x^2} -2 = 0\} \). Tập hợp G không chứa phần tử nào vì \({x^2} - 2 = 0 \Leftrightarrow x = \pm \sqrt 2 \notin \mathbb{Z}\)
\(\mathbb{N}* = \left\{ {1;2;3;..} \right\}.\): tập hợp N* có vô số phần tử.
a) Khoảng \(\left( { - 2;3} \right)\)
b) Đoạn \(\left[ {1;10} \right]\)
c) Nửa khoảng \(\left( {\left. { - 5;\sqrt 3 } \right]} \right.\)
d) Nửa khoảng \(\left. {\left[ {\pi ;4} \right.} \right)\)
e) Khoảng \(\left( { - \infty ;\frac{1}{4}} \right)\)
g) Nửa khoảng \(\left[ {\left. {\frac{\pi }{2}; + \infty } \right)} \right.\)
\(C = \{ x \in \mathbb{R}|{x^2} < 0\} \). Tập hợp C không chứa phần tử nào vì bình phương mọi số thực đều không âm.
\(D = \{ a\} ,\) tập hợp D có duy nhất 1 phần tử là a.
\(E = \{ b;c;d\} ,\) tập hợp E có 3 phần tử.
\(\mathbb{N} = \left\{ {0;1;2;..} \right\}\): tập hợp N có vô số phần tử.
a) \(A = \{ x \in \mathbb{N}|\;x < 2\} = \{ 0;1\} \) và \(B = \{ x \in \mathbb{R}|\;{x^2} - x = 0\} = \{ 0;1\} \)
Vậy A = B, A là tập con của tập B và ngược lại.
b) D là tập hợp con của C vì: Mỗi hình vuông đều là một hình thoi đặc biệt: hình thoi có một góc vuông.
\(C \ne D\) vì có nhiều hình thoi không là hình vuông, chẳng hạn:
c) \(E = ( - 1;1] = \left\{ {x \in \mathbb{R}|\; - 1 < x \le 1} \right\}\) và \(F = ( - \infty ;2] = \left\{ {x \in \mathbb{R}|\;x \le 2} \right\}\)
E là tập con của F vì \( - 1 < x \le 1 \Rightarrow x \le 2\) .
\(E \ne F\) vì \( - 3 \in F\)nhưng \( - 3 \notin E\)
Ta có: \({x^2} - 6 = 0 \Leftrightarrow x = \pm \sqrt 6 \in \mathbb{R}\)
Vì \(\sqrt 6 \in \mathbb{R}\) và \( -\sqrt 6 \in \mathbb{R}\) nên \( A = \left\{ { \pm \sqrt 6 } \right\}\)
Nhưng \( \pm \sqrt 6 \notin \mathbb{Z}\) nên không tồn tại \(x \in \mathbb{Z}\) để \({x^2} - 6 = 0\)
Hay \(B = \emptyset \).