Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\dfrac{9}{49}}=\sqrt{\dfrac{3}{7}}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}=\dfrac{\sqrt{9}+\sqrt{1521}}{\sqrt{49}+\sqrt{8281}}=\dfrac{3+39}{7+91}=\dfrac{42}{98}\)
c)Tương tự câu b, ta đc:
\(\dfrac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\dfrac{3-39}{7-91}=\dfrac{-36}{86}=\dfrac{3}{7}\)
d)Tương tự câu a, ta đc:
\(\dfrac{\sqrt{39^2}}{\sqrt{91^2}}=\dfrac{39}{91}\)
Chúc Bạn Học Tốt!!!
a) \(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\left(\dfrac{3}{7}\right)^2}=\left|\dfrac{3}{7}\right|=\dfrac{3}{7}\)
b) \(\dfrac{\sqrt{3}^2+\sqrt{39}^2}{\sqrt{7}^2+\sqrt{91}^2}=\dfrac{\left|3\right|+\left|39\right|}{\left|7\right|+\left|91\right|}=\dfrac{3+39}{7+91}=\dfrac{42}{98}=\dfrac{3}{7}\)
c) \(\dfrac{\sqrt{3}^2-\sqrt{39}^2}{\sqrt{7}^2-\sqrt{91}^2}=\dfrac{\left|3\right|- \left|39\right|}{\left|7\right|-\left|91\right|}=\dfrac{3-39}{7-91}=\dfrac{-36}{-84}=\dfrac{3}{7}\)
d) \(\sqrt{\dfrac{39^2}{91^2}}=\sqrt{\left(\dfrac{39}{91}\right)^2}=\left|\dfrac{39}{91}\right|=\dfrac{39}{91}=\dfrac{3}{7}\)
\(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{7^2}+\sqrt{91^2}}\)\(=\frac{3+39}{7+91}=\frac{42}{98}=\frac{3}{7}\)
a)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}.1\)
=\(\frac{3+39}{7+91}\)
=\(\frac{42}{98}\)
=\(\frac{3}{7}\)
b)\(\sqrt{\left(2,5-0,7\right)^2}\)
=\(|2,5-0,7|\)
=2,5-0,7
=1,8
a: \(=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2}\cdot\dfrac{1}{4}=\dfrac{1}{100}\)
b: \(=\dfrac{\left[5^3\left(5-1\right)\right]^3}{5^{12}}=\dfrac{5^9}{5^{12}}\cdot\dfrac{4^3}{1}=\dfrac{4^3}{5^3}\)
c: \(=\sqrt{1.8^2}=1.8\)
#Giải:
a)\(\sqrt{27}\)+\(\sqrt{75}\)-\(\sqrt{\dfrac{1}{3}}\)=8\(\sqrt{3}\)-\(\sqrt{\dfrac{1}{3}}\)=\(\dfrac{23\sqrt{3}}{3}\).
b)\(\sqrt{4+2\sqrt{3}}\)-\(\sqrt{4-2\sqrt{3}}\)=2.
c)\(\dfrac{3}{\sqrt{7}+\sqrt{2}}\)+\(\dfrac{2}{3+\sqrt{7}}\)+\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)=1,093+\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)=2,507.
a) = \(3\sqrt{3}+5\sqrt{3}-\dfrac{1}{\sqrt{3}}\)
= \(3\sqrt{3}+5\sqrt{3}-\dfrac{3}{\sqrt{3}}\)
= \(\dfrac{23\sqrt{3}}{3}\)
b) = \(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
= \(1+\sqrt{3}-\left(\sqrt{3}-1\right)\)
= \(1+\sqrt{3}-\sqrt{3}+1\)
= 2
c) = \(\dfrac{3\left(\sqrt{7}-\sqrt{2}\right)}{5}+\dfrac{2\left(3-\sqrt{7}\right)}{2}+\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)\)
= \(3\sqrt{7}-3\sqrt{2}+3-\sqrt{7}+2\sqrt{2}+2-2-\sqrt{2}\)
= \(\dfrac{3\sqrt{7}-3\sqrt{2}}{5}+3-\sqrt{7}+\sqrt{2}\)
= \(\dfrac{3\sqrt{7}-3\sqrt{2}-5\sqrt{7}+5\sqrt{2}}{5}+3\)
= \(\dfrac{-2\sqrt{7}+2\sqrt{2}}{5}+3\)
\(\approx2,5\)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
Các số bằng \(\dfrac{3}{7}\) là a ; b ; c ; d