Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(x-2\right)\left(x+15\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=-15\end{matrix}\right.\)
Vậy \(x\in\left\{3;-15\right\}\)
Các phần khác làm tương tự
Bài 2:
Ta có: \(-\left(x-1\right)^2\le0\)
\(\Rightarrow M=2012-\left(x-1\right)^2\le2012\)
Vậy \(MIN_M=2012\) khi \(x=1\)
Bài 3:
Ta có: \(\left|x-3\right|\ge0\)
\(\Rightarrow N=\left|x-3\right|+10\ge10\)
Vậy \(MAX_M=10\) khi \(x=3\)
Bài 4:
Ta có: \(n-6⋮n-4\)
\(\Rightarrow\left(n-4\right)-2⋮n-4\)
\(\Rightarrow2⋮n-4\)
\(\Rightarrow n-4\in\left\{1;-1;2;-2\right\}\)
\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=2\\n-4=-2\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=6\\n=2\end{matrix}\right.\)
Vậy \(n\in\left\{5;3;6;2\right\}\)
Bài 5: Tương tự bài 4
Bài 1:
b)\(\left(x+15\right)\left(x-12\right)=0\)
\(\Rightarrow\left[\begin{matrix}x+15=0\\x-12=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=-15\\x=12\end{matrix}\right.\)
c)\(\left(x-7\right)\left(x+19\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-7=0\\x+19=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=7\\x=-19\end{matrix}\right.\)
d)\(\left(x-11\right)\left(x+5\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-11=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
Bài 5:
\(\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\in Z\)
\(\Rightarrow3⋮n-2\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)
Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)
\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)
\(=\left|4-2x\right|+y^2-5\)
Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)
\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )
d
d