Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left( { + 3} \right)\left( { + 4} \right) = 3.4 = 12\)
\(\left( { + 5} \right).\left( { + 2} \right) = 5.2 = 10\)
b)
Các tích liên tiếp tăng 5 đơn vị nên \(\left( { - 1} \right).\left( { - 5} \right) = 5\) và đến tích cuối cùng là \(\left( { - 2} \right).\left( { - 5} \right) = 10\).
a) (x+5)+(x+10)+.........+(x+60)=450
12x +(5+10+.........+60)=450
12x+390=450
12x=60
x=5
b) Gọi n là thương của phép chia a cho 54; =>54n+38=252+r =>r-2 chia hết cho 54
r là dư của phép chia a cho 18 (n,r thuộc N;r<14) =>54n =214+r =>r-2=0
=>a=54n + 38 =>n=(214+r):54 =>r =2
a=18x14+r =>214+r chia hết cho 54 =>a=18x14+2=254
=>54n+38=18x14+r =>216+r-2 chia hết cho 54
Câu 5:
\(168=2^3\cdot3\cdot7\)
\(180=2^2\cdot3\cdot5\)
UCLN(168;180)=12
BCNN(168;180)=840
Câu 4:
a: =>518-x+144=-36
=>662-x=-36
hay x=698
b: \(\Leftrightarrow3x=30\)
hay x=10
c: \(\Leftrightarrow2x-8=16:2=8\)
=>2x=16
hay x=8
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
a) \(\left(-8\right).\left(-3\right)^3.\left(+125\right)\\ =\left(-2\right)^3.\left(-3\right)^3.\left(+5\right)^3\\ =\left[\left(-2\right).\left(-3\right).\left(+5\right)\right]^3\\ =30^3\)
b) \(27.\left(-2\right)^3.\left(-7\right).\left(+49\right)\\ =3^3.\left(-2\right)^3.\left(-7\right).\left(-7\right)^2\\ =\left[3.\left(-2\right)\right]^3.\left[\left(-7\right).\left(-7\right)^2\right]\\ =\left(-6\right)^3.\left(-7\right)^3\\ =\left[\left(-6\right).\left(-7\right)\right]^3\\ =42^3\)
3.
a) Số thứ nhất là +3 nên ta có 3 hạt đậu đỏ. Số thứ 2 là +1 nên ta có 1 hạt đậu đỏ.
Tổng số hạt đậu đỏ là 4 hạt. Vậy \(\left( { + 3} \right) + \left( { + 1} \right) = + 4\).
b) \(\left( { + 2} \right) + \left( { + 2} \right) = + 4\). (Chỉ có hạt đỏ).
c) \(\left( { - 1} \right) + \left( { - 2} \right) = - 3\).(Chỉ có hạt đen).
d) \(\left( { - 2} \right) + \left( { - 3} \right) = - 5\).(Chỉ có hạt đen).
e) \(\left( { - 2} \right) + \left( { + 3} \right) = + 1\). (Số cặp hạt đen-đỏ là 2 cặp)
g) \(\left( { + 2} \right) + \left( { - 2} \right) = 0\). (Số cặp hạt đen-đỏ là 2 cặp)
h) \(2 + \left( { - 5} \right) = -3\). (Số cặp hạt đen-đỏ là 2 cặp)