K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Sửa đề: Hình thang \(ABCD\left(BC//AD\right)\) Ý 2: \(MN//AD//BC\)

Hình tự vẽ nha <3

Gọi \(E,F\) lần lượt là trung điểm của các cạnh \(BC;AD\)

Gọi \(H\) là giao điểm của \(PE\)\(AD\)\(K\) là giao điểm của \(PK\)\(BC\)

Xét \(\Delta MBE\) có: \(BE//AH\)

\(\Rightarrow\frac{MB}{MA}=\frac{BE}{HA}\)

Lại có: \(\frac{EC}{AH}=\frac{BE}{HA}\Rightarrow\frac{MB}{MA}=\frac{EC}{AH}\)

Chứng minh tương tự ta có: \(\frac{NC}{ND}=\frac{CK}{AF}\)

Xét \(\Delta PAH\) có: \(EC//AH\)

\(\Rightarrow\frac{PC}{PA}=\frac{EC}{AH}\)

Xét \(\Delta PAF\) có: \(CK//AF\)

\(\Rightarrow\frac{PC}{PA}=\frac{CK}{AF}\Rightarrow\frac{MB}{MA}=\frac{NC}{ND}\Rightarrow MN//AD//BC\left(đpcm\right)\)

20 tháng 1 2018

Tham khảo bài này nha!

Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?

 Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
hay ta có OK đi qua trung điểm của AB và CD.

20 tháng 1 2018

:  Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
 ta có OK đi qua trung điểm của AB và CD.

9 tháng 10 2021

Giải thích các bước giải:

a/ Trong ΔABCΔABC có N,PN,P lần lượt là trung điểm của BC,ACBC,AC

⇒ NPNP là đường trung bình ΔABCΔABC

⇒ NP//AB//CDNP//AB//CD (1)

Trong ΔBCDΔBCD có N,QN,Q lần lượt là trung điểm của BC,BDBC,BD

⇒ NQNQ là đường trung bình ΔBCDΔBCD

⇒ NQ//CD//ABNQ//CD//AB (1)

Trong hình thang ABCDABCD có M,NM,N lần lượt là trung điểm của AD,BCAD,BC

⇒ MNMN là đường trung bình hình thang ABCDABCD

⇒ MN//AB//CDMN//AB//CD (3)

Từ (1) (2) và (3) suy ra: M,N,P,QM,N,P,Q thằng hàng

Hay M,N,P,QM,N,P,Q nằm trên một đường thẳng

b/ Vì MNMN là đường trung bình thang ABCDABCD

nên MN=AB+CD2=a+b2MN=AB+CD2=a+b2

Ta có: NPNP là đường trung bình ΔABCΔABC

⇒ NP=AB2=a2NP=AB2=a2

Ta lại có: NQNQ là đường trung bình ΔBCDΔBCD

⇒ NQ=CD2=b2NQ=CD2=b2

Vì a>b nên PQ=NP−NQ=a2−b2=a−b2PQ=NP−NQ=a2−b2=a−b2

c/ Ta có: MN=MP+PQ+QNMN=MP+PQ+QN

⇒a+b2=3.a−b2⇒a+b2=3.a−b2

⇒a+b=3a−3b⇒a+b=3a−3b

⇒3a−a=b+3b⇒3a−a=b+3b

⇒2a=4b⇒2a=4b

⇒a=2b⇒a=2b

Chúc bạn học tốt !!!

^HT^

9 tháng 10 2021

trả lời :

undefined

^HT^

1)Cho góc xAy khác góc bẹt. trên cạnh Ox lấy hai điểm B và D, trên cạnh Ay lấy hai điểm C và E sao cho \(\frac{AD}{BD}\)= \(\frac{11}{8}\)và AC= \(\frac{3}{8}\)CE. a) Chứng minh BC//DE b) Biết BC= 3cm. Tính DE 2) Cho hình thang ABCD (AB//CD) có AB= 14cm, CD= 35cm, AD= 17,5cm. trên cạnh AD lấy sđiểm E sao cho DE =5cm. Qua E vẽ đường thẳng song song với AB cắt BC ở F. Tính độ dài EF. 3) Cho hình thang ABCD. Một cát tuyến d song...
Đọc tiếp

1)Cho góc xAy khác góc bẹt. trên cạnh Ox lấy hai điểm B và D, trên cạnh Ay lấy hai điểm C và E sao cho \(\frac{AD}{BD}\)= \(\frac{11}{8}\)và AC= \(\frac{3}{8}\)CE.

a) Chứng minh BC//DE

b) Biết BC= 3cm. Tính DE

2) Cho hình thang ABCD (AB//CD) có AB= 14cm, CD= 35cm, AD= 17,5cm. trên cạnh AD lấy sđiểm E sao cho DE =5cm. Qua E vẽ đường thẳng song song với AB cắt BC ở F. Tính độ dài EF.

3) Cho hình thang ABCD. Một cát tuyến d song song với đáy DC cắt AD, BC lần lượt ở M,N. Chứng minh \(\frac{AM}{MD}\)=\(\frac{BN}{NC}\)

4) Cho hình thang ABCD có AB//CD. Gọi O là giao điểm hai đường chéoAC và BD và K là giao điểm của AD và BD. Kẻ đường thẳng KO cắt AB tại M, cắt CD tại N. CMR:

a) \(\frac{MA}{ND}\)=\(\frac{MB}{NC}\)

b) \(\frac{MA}{NC}\)=\(\frac{MB}{ND}\)

c) M là trung điểm của AB; N là trung điểm CD

1
19 tháng 1 2017

@Nguyễn Trần Thành Đạt giúp mình với

Nguyễn Quang DuyNguyễn Huy ThắngNguyễn Phương Trâm

ai giỏi toán giúp đi, mình học toán dở.