Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ tia CO cắt tia đối của tia By tại E
Xét tam giác vuông AOC và tam giác vuông BOE có :
AO = OB ( gt )
AOC = BOE ( 2 góc đối đỉnh )
\(\implies\) tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn )
\(\implies\) AC = BE ( 2 cạnh tương ứng )
Xét tam giác vuông DOC và tam giác vuông DOE có :
OD chung
OC = OE ( tam giác vuông AOC = tam giác vuông BOE )
\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông )
\(\implies\) CD = ED ( 2 cạnh tương ứng )
Mà ED = EB + BD
\(\implies\) ED = AC + BD
\(\implies\) CD = AC + BD
c) Xét tam giác DOE vuông tại O có :
OE2 + OD2 = DE2 ( Theo định lý Py - ta - go )
Xét tam giác BOE vuông tại B có :
OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * )
Xét tam giác BOD vuông tại B có :
OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )
Cộng ( * ) với ( ** ) vế với vế ta được :
OE2 + OD2 = 2. OB2 + EB2 + DB2
Mà OE2 + OD2 = DE2 ( cmt )
\(\implies\) DE2 = 2. OB2 + EB2 + DB2
= 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE )
= 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE
= 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE
= 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE
= 2. OB2 + DE2 - 2 . BD . BE
\(\implies\) 2. OB2 - 2 . BD . BE = 0
\(\implies\) 2. OB2 = 2 . BD . BE
\(\implies\) OB2 = BD . BE
Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt )
\(\implies\) AC . BD = ( AB / 2 )2
\(\implies\) AC . BD = AB2 / 4
a)Gọi I là trung điểm của CD
Xét hình thang ACDB (AC//BD) có:\(\hept{\begin{cases}CI=ID\\AO=BO\end{cases}}\)
=>OI là đường tung bình của hình thang ACDB
=>\(OI=\frac{AC+BD}{2}=\frac{CD}{2}=CI=DI\)
=>Tam giác COD vuông tại O
=> đpcm
b)Kẻ OE vuông góc với CD,giao cuae CO và BD là F
Ta có tam giác ACO=Tam giác BFO( cạnh góc vuông-góc nhọn kề)
=>OC=OF
Xét tam giác CDF có:
CO=OF (cmt)
DO vuông góc với CF
=>tam giác CDF cân tại D
=>DO là phân giác góc CDF
=>góc EDO=BDO
=>tam giác EOD=tam giác BOD(Cạnh huyền - góc nhọn)
=>OE=OB
=>EO là bán kính (O) mà OE vuông góc với BC(cách vẽ)
=>CD là tiếp tuyến đường tròn đường kính AB
a: Trên đoạn CD, lấy E sao cho CA=CE
Xét ΔCAO và ΔCEO có
CA=CE
OA=OE
CO chung
Do đó: ΔCAO=ΔCEO
Suy ra: góc EOC=góc AOC
=>góc EOD=góc BOD
Xét ΔEOD và ΔBOD có
OE=OB
góc EOD=góc BOD
OD chung
Do đó: ΔEOD=ΔBOD
Suy ra: ED=DB
=>CD=AC+BD
b: Ta có: ΔOEC=ΔOAC
nên góc OEC=góc OAC=90 độ
hay CD là tiếp tuyến của (O)
c: \(AC\cdot BD=AE\cdot ED=OE^2=\dfrac{AB^2}{4}\)
a, Xét tam giác DOB và tam giác IOA ta có :
^DOB = ^IOA ( đối đỉnh )
^AIO = ^ODB ( DB // CA do cùng vuông AB và 2 góc này ở vị trí so le trong )
^OAI = ^OBD = 900
Vậy tam giác DOB = tam giác IOA ( ch - gn )
=> OD = OI ( 2 góc tương ứng )
b, Xét tam giác ICD có CO vuông ID hay CO là đường cao
Lại có IO = OD ( cmt ) => CO là đường trung tuyến
=> tam giác ICD cân tại C => CI = CD (2)
Mặt khác : tam giác DOB = tam giác IOA ( cmt ) => BD = IA (1)
=> CI = AC + IA lại có (1) ; (2) => CD = AC + BD
c, Dựng OH vuông CD
Xét tam giác DHO và tam giác HBO ta có :
^DHO = ^HBO = 900
^HDO = ^ODB ( cùng ''='' ^CID )
OD _ chung
Vậy tam giác DHO = tam giác HBO ( g.c.g )
=> OH = OB = R
Vậy CD là tiếp tuyến đường tròn (O)