K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

A B C D O M

a) BC vuông góc với AO là theo tính chất hai tiếp tuyến đi qua 1 điểm A

b) Xét hai tam giác DCO và DBA có góc D chung và góc C = góc B = 90 độ (tính chất tiếp tuyến)

=> tam giác DCO đồng dạng với tam giác DBA

=>  DC/DB = DO/DA

=> DC.DA = DO.DB (đpcm)

c) Vì OM vuông góc với DB => OM // BA (cùng vuông góc với DB)

Ta có AM/DM + 1 = (AM + DM)/DM = DA/DM

Theo Viet ta có: DA/DM = AB/MO

=> AM/DM + 1 = AB/OM

=> AB/OM - AM/DM = 1    (*)

Ta lại có tam giác MOA cân (vì góc MOA = góc BAO do so le trong, góc MAO = góc BAO do tính chất hai tiếp tuyến cùng 1 điểm)

=> OM = AM

(*) trở thành: AB/AM - AM/DM = 1 (đpcm)

a: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

=>ΔABC đòng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

b: góc AMO=góc ABO=90 độ

=>ABMO nội tiếp, I là trung điểm của AO

a: AB=8cm

=>BM=4cm

b: Xét ΔMAC và ΔMBD có

MA=MB

góc AMC=góc BMD

MC=MD

Do đo: ΔMAC=ΔMBD

Suy ra: AC=BD

c: AC+BC=BD+BC>CD=2CM

a: OB=10-3=7cm

=>OB>BM

=>M nằm giữa O và B

b: OM=AM-AO=2cm

9 tháng 12 2017

1). Gọi MN giao PQ tại T. Theo định lí Thales, ta có T P T C = T D T B = T C T Q .

Từ đó T C 2 = T P . T Q .

Do TC là tiếp tuyến của (O), nên  T C 2 = T M . T N .

Từ đó T M . T N = T C 2 = T P . T Q , suy ra tứ giác MNPQ nội tiếp.