K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

\(x^2=2mx+1\Leftrightarrow x^2-2mx-1=0\Rightarrow\Delta'>0\Leftrightarrow m^2+1>0\left(luônđúng\right)\)

\(\Rightarrow\left(P\right)\left(d\right)\) \(luôn\) \(cắt\) \(tại2\) \(điểm\) \(pbA;B\Rightarrow\left\{{}\begin{matrix}x_A+x_B=2m\\xa.xb=-1\end{matrix}\right.\)

\(I\) \(trunng\) \(điểmAB\Rightarrow I\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(\dfrac{2m}{2};\dfrac{2mx_A+1+2mx_B+1}{2}\right)=\left(m;m.x_A+mx_B+1\right)\)

 \(\Rightarrow OI=\sqrt{10}=\sqrt{m^2+\left(mx_A+mx_B+1\right)^2}\)

\(\Leftrightarrow10=m^2+\left[m\left(x_A+x_B\right)+1\right]^2=m^2+\left(2m^2+1\right)^2\)

\(\Leftrightarrow m^2+4m^4+4m^2+1=10\Leftrightarrow4m^4+5m^2-9=0\)

\(đặt:m^2=t\ge0\Rightarrow4t^2+5t-9=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(tm\right)\Rightarrow m=\pm1\\t=-\dfrac{9}{4}\left(ktm\right)\end{matrix}\right.\)

9 tháng 3 2022

cảm ơn bạn nhiều ạyeu

PTHHĐGĐ là:

x^2-2x-m^2+2m=0

Δ=(-2)^2-4(-m^2+2m)

=4+4m^2+8m=(2m+2)^2

Để phương trình có hai nghiệm phân biệt thì 2m+2<>0

=>m<>-1

x1^2+2x2=3m

=>x1^2+x2(x1+x2)=3m

=>x1^2+x2^2+x1x2=3m

=>(x1+x2)^2-x1x2=3m

=>2^2-(-m^2+2m)=3m

=>4+m^2-2m-3m=0

=>m^2-5m+4=0

=>m=1 hoặc m=4

10 tháng 5 2023

sao 2x2 lại bằng x2(x1+x2) vậy ạ

b: Thay m=2 vào (d), ta được:

y=2x-2+1=2x-1

Phương trình hoành độ giao điểm là:

\(x^2=2x-1\)

=>\(x^2-2x+1=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=2x-m+1\)

=>\(x^2-2x+m-1=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

=4-4m+4

=-4m+8

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

y1,y2 thỏa mãn gì vậy bạn?

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

13 tháng 6 2021

a) pt hoành độ giao điểm: \(x^2-2x+3-m^2=0\) 

Để đường thẳng d cắt (P) tại 2 điểm phân biệt thì \(\Delta'>0\)

\(\Delta'=1+m^2-3\Rightarrow m^2-2>0\Rightarrow\left|m\right|>\sqrt{2}\)

b) Gọi giao điểm là \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

\(\Rightarrow A\left(x_1,x_1^2\right);B\left(x_2,x_2^2\right)\)

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3-m^2\end{matrix}\right.\)

Theo đề: \(y_1-y_2=8\Rightarrow x_1^2-x_2^2=8\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=8\)

\(\Rightarrow x_1-x_2=4>0\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4m^2-8\)

\(\Rightarrow x_1-x_2=\sqrt{4m^2-8}\left(x_1-x_2>0\right)\Rightarrow4=\sqrt{4m^2-8}\)

\(\Rightarrow4m^2-8=16\Rightarrow m=\pm\sqrt{6}\)

 

 

 

17 tháng 5 2021

đơn giản vl

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)