K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P):   y = - x2a)      Vẽ parabol (P)b)     Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).c)       Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại MBài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + mCMR: (d) luôn cắt (P) tại 2 điểm phân biệta)      Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có...
Đọc tiếp

Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P):   y = - x2

a)      Vẽ parabol (P)

b)     Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).

c)       Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại M

Bài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

CMR: (d) luôn cắt (P) tại 2 điểm phân biệt

a)      Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị nhỏ nhất của biểu thức P =  khi m thay đổi

Bài 3. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt nằm bên phải trục tung

Bài 4. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

Bài 5. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1

Tìm m sao cho (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2  sao cho

Bài 6. Cho parabol (P) : y = x2 và đường thẳng (d) : y = mx - m2 + m +1.

            a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).

            b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho .

0
19 tháng 9 2019

 

a) Vì A, B thuộc (P) nên:

x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2  ,  B ( 2 ; 2 )

b) Gọi phương trình đường thẳng (d) là y = ax + b.

Ta có hệ phương trình:

− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1

Vậy (d):  y = 1 2 x + 1 .

c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)

=>  OC = 1 và OD = 2

Gọi h là khoảng cách từ O tới (d).

Áp dụng hệ thức về cạnh và đường cao vào  vuông OCD, ta có:

1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5

Vậy khoảng cách từ gốc O tới (d) là  2 5 5 .

 

a: Thay x=2 và y=2 vào y=-x+4, ta được:

2=-2+4(đúng)

=>A thuộc (d)

b: Thay x=2 và y=2 vào y=ax^2, ta được:
a*4=2

=>a=1/2

=>y=1/2x^2

PTHĐGĐ là:

1/2x^2+x-4=0

=>x^2+2x-8=0

=>x=-4

=>y=1/2*(-4)^2=8

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m+1=-3

hay m=-4

 

13 tháng 1 2022

Còn phần b nữa bạn ơi

13 tháng 6 2021

a) pt hoành độ giao điểm: \(x^2-2x+3-m^2=0\) 

Để đường thẳng d cắt (P) tại 2 điểm phân biệt thì \(\Delta'>0\)

\(\Delta'=1+m^2-3\Rightarrow m^2-2>0\Rightarrow\left|m\right|>\sqrt{2}\)

b) Gọi giao điểm là \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

\(\Rightarrow A\left(x_1,x_1^2\right);B\left(x_2,x_2^2\right)\)

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3-m^2\end{matrix}\right.\)

Theo đề: \(y_1-y_2=8\Rightarrow x_1^2-x_2^2=8\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=8\)

\(\Rightarrow x_1-x_2=4>0\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4m^2-8\)

\(\Rightarrow x_1-x_2=\sqrt{4m^2-8}\left(x_1-x_2>0\right)\Rightarrow4=\sqrt{4m^2-8}\)

\(\Rightarrow4m^2-8=16\Rightarrow m=\pm\sqrt{6}\)

 

 

 

a: loading...

b: PTHĐGĐ là:

-x^2+4x-3=0

=>x^2-4x+3=0

=>x=1;x=3

=>A(1;-1); B(3;-9)

c: \(AB=\sqrt{\left(3-1\right)^2+\left(-9+1\right)^2}=2\sqrt{17}\)

 

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)