Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{AOC}+\widehat{BOC}=\widehat{AOB}\)
=> \(60^0+\widehat{BOC}=90^0\)
=> \(\widehat{BOC}=90^0-60^0\)
=> \(\widehat{BOC}=30^0\) (1)
Lại có: \(\widehat{BOC}+\widehat{COD}=\widehat{BOD.}\)
=> \(30^0+\widehat{COD}=60^0\)
=> \(\widehat{COD}=60^0-30^0\)
=> \(\widehat{COD}=30^0\) (2)
Từ (1) và (2) => \(\widehat{BOC}=\widehat{COD}\left(=30^0\right).\)
=> OC là tia phân giác của \(\widehat{BOD}.\)
Ta có: \(\widehat{COD}+\widehat{AOD}=\widehat{AOC.}\)
=> \(30^0+\widehat{AOD}=60^0\)
=> \(\widehat{AOD}=60^0-30^0\)
=> \(\widehat{AOD}=30^0\).
Vì \(\widehat{COD}=\widehat{AOD}\left(=30^0\right)\)
=> OD là tia phân giác của \(\widehat{AOC}.\)
b) Vì OB là tia phân giác của \(\widehat{DOE}\)
=> \(\widehat{BOD}=\widehat{BOE}\left(=60^0\right).\)
Ta có: \(\widehat{BOC}+\widehat{BOE}=\widehat{COE}\)
=> \(30^0+60^0=\widehat{COE}\)
=> \(\widehat{COE}=90^0.\)
=> \(OC\perp OE\left(đpcm\right).\)
Chúc bạn học tốt!
a) ÁP dụng định lý Pytago và tg vuông ABC ,có:
BC^2 = AB^2 + AC^2
Hay 7.5^2 = 6^2 + AB^2
56,25 = 36 + AB^2
=>AB^2 = 56,25 - 36 = 20.25
=> AB = căn bậc 2 của 20,25 = 4.5
b) ý b mik k giải ra thông cảm
a: Xét tứ giác AHDB có
AH//BD
AH=BD
DO đó: AHDB là hình bình hành
Suy ra: AB//DH
b: \(\widehat{BAH}=\widehat{ACB}=35^0\)
moi hok lop 6