Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
- Xét trên tam giác vuông AOC có OA = 6 cm, OC = 8 cm → AC = 8 2 + 6 2 = 10cm.
- Gọi M là điểm nằm trên CO dao động cùng pha với nguồn → AM = kλ = 1,6k.
Lại có AO ≤ AM ≤ AC ↔ 6 ≤ 1,6k ≤ 10 → 3,75 ≤ k ≤ 6,75
Có 3 giá trị k nguyên thỏa mãn → Trên CO có 3 điểm dao động cùng pha với nguồn.
- Trên đoạn DO (với D đối xứng với C qua O) cũng có 3 điểm dao động cùng pha với nguồn.
→ Trên CD có tất cả có 6 điểm dao động cùng pha với nguồn.
Chọn đáp án B
Xét tam giác vuông AOC có OA = 6 cm và OC = 8 cm → AC =10 cm.
- Gọi M là điểm nằm trên đoạn CO và dao động cùng pha với nguồn → AM = kλ = 1,6k.
A O ≤ A M ≤ A C → 6 ≤ 1,6 k ≤ 10 → 3,75 ≤ k ≤ 6,75
Có 3 giá trị k nguyên thỏa mãn → có 3 điểm trên đoạn CO dao động cùng pha với nguồn.
- Tương tự trên đoạn DO cũng có 3 điểm dao động cùng pha với nguồn.
→ Có 6 điểm trên đoạn CD dao động cùng pha với nguồn.
Đáp án B
Xét tam giác vuông AOC có OA = 6 cm và OC = 8 cm → AC =10 cm.
- Gọi M là điểm nằm trên đoạn CO và dao động cùng pha với nguồn → AM = kλ = 1,6k.
A O ≤ A M ≤ A C → 6 ≤ 1 , 6 k ≤ 10 → 3 , 75 ≤ k ≤ 6 , 75
Có 3 giá trị k nguyên thỏa mãn → có 3 điểm trên đoạn CO dao động cùng pha với nguồn.
- Tương tự trên đoạn DO cũng có 3 điểm dao động cùng pha với nguồn.
→ Có 6 điểm trên đoạn CD dao động cùng pha với nguồn.
Đáp án B
Phương trình dao động của hai nguồn
Phương trình dao động của điểm M thuộc CO, cách nguồn khoảng d là:
Vì điểm M dao động ngược pha với nguồn nên:
Mà
Vậy trên đoạn CO có 1 điểm dao động ngược pha với nguồn.
Đáp án B
Ta có M và N là hai điểm trên mặt nước và cùng cách đều A,B những đoạn là 16 cm nên M và N đều thuộc đường trung trực của AB và M N đối xứng nhau qua AB
như vậy trên đoạn OM có 3 điểm dao động cùng pha với nguồn
Do N đối xứng với M qua O nên trên đoạn ON cũng có 3 điểm dao động cùng pha với nguồn
Do trên đoạn ON và OM trùng nhau vân tại O nên trên đoạn MN có 5 điểm dao động cùng pha với nguồn
+ Giả sử phương trình truyền sóng ở hai nguồn u = acosꞷt
+ Xét điểm N trên CO: AN = BN = d; ON = x với 0 ≤ x ≤ 8 c m
+ Biểu thức sóng tại N: u N = 2 a cos ω t − 2 π d λ
+ Để uN dao động ngược pha với hai nguồn: 2 π d λ = 2 k = 1 π ⇒ d = k + 1 2 λ = 1 , 6 k + 0 , 8
+ Ta có: d 2 = A O 2 + x 2 = 6 2 + x 2 ⇒ 1 , 6 k + 0 , 8 2 = 36 + x 2 ⇒ 0 ≤ x 2 = 1 , 6 k + 0 , 8 2 − 36 ≤ 64
⇒ 6 ≤ 1 , 6 k + 0 , 8 ≤ 10 ⇒ 4 ≤ k ≤ 5
→ Có 2 giá trị của k: 4, 5 nên có hai vị trí dao động ngược pha với nguồn
Chọn đáp án D
Chọn đáp án D
Giả sử phương trình truyền sóng ở hai nguồn u = acost
Xét điểm N trên CO: AN = BN = d; ON = x với 0 ≤ x ≤ 8 c m
Biểu thức sóng tại N:
u
N
=
2
a
cos
ω
t
−
2
π
d
λ
Để uN dao động ngược pha với hai nguồn:
2 π d λ = 2 k = 1 π ⇒ d = k + 1 2 λ = 1 , 6 k + 0 , 8
Ta có:
d 2 = A O 2 + x 2 = 6 2 + x 2 ⇒ 1 , 6 k + 0 , 8 2 = 36 + x 2 ⇒ 0 ≤ x 2 = 1 , 6 k + 0 , 8 2 − 36 ≤ 64
⇒ 6 ≤ 1 , 6 k + 0 , 8 ≤ 10 ⇒ 4 ≤ k ≤ 5
→ Có 2 giá trị của k: 4, 5 nên có hai vị trí dao động ngược pha với nguồn
Điểm M và N cách đều A,B do đó thuộc đường trung trực của AB, và đối xưng nhau qua trung điểm O của AB và OM=ON=16cm
Đường trung trực của AB là đường cực đại, các điểm trên đường này dao động với phương trình
\(x=2A\cos\left(\omega t-\frac{x}{\lambda}2\pi\right)\) x là khoảng cách từ điểm đó đến 2 nguồn
Xét từ O đến M
x sẽ nằm trong khoảng từ 12cm(AB/2) đến 20cm(pytago)
Cùng pha với nguồn
\(x=k\lambda\)
Các x thỏa mãn là 12.5; 15; 17.5 và 20
Cả hai bên sẽ có 8 (tính cả M và N)