K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

coi như giải hệ pt

\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)

\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)

Vậy chỉ có điểm x=1; y=2 thỏa mãn

26 tháng 11 2018

Gọi A(x0;y0) là điểm thuộc đồ thị y = x + 1 thỏa mãn đẳng thức

⇒ y0= x0+1⇒ x0=y0-1

Vì A thỏa mãn đẳng thức nên

y02 - \(3y_0\sqrt{x_0}\)+2x0 =0

⇒ y02 -3y0\(\sqrt{y_0-1}+2\left(y_0-1\right)\)=0

mk ms làm đến đây thôi mong bn thông cảm

27 tháng 11 2018

cảm ơn bạn nhé!

21 tháng 12 2015

Ra. Bài này không khó lắm. Chỉ cần khéo chút là được

ĐKXĐ: \(y\ge0;x\ge\frac{3}{2}\)

Phương trình đầu tương đương với\(x^3+y^3+3xy\left(x+y\right)+4xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)

<=> \(\left(x+y\right)^3+4xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)

ta đánh giá vế trái

Áp dụng BĐT cô-si cho 2 số dương 

=> \(VT\ge2\sqrt{4\left(x+y\right)^4.xy}=4\left(x+y\right)^2\sqrt{xy}\)

\(=4x^2\sqrt{xy}+8xy\sqrt{xy}+4y^2\sqrt{xy}=4\sqrt{xy}\left(x^2+y^2\right)+8xy\sqrt{xy}\)

Lại áp dụng cô-si ta lại có

\(VT\ge2\sqrt{8.4.xy.\sqrt{\left(xy\right)^2.\left(x^2+y^2\right)}}=8xy\sqrt{2\left(x^2+y^2\right)}=VP\)

Dấu "=" khi \(\left(x+y\right)^3=4xy\left(x+y\right)\) 

và \(4\sqrt{xy}\left(x^2+y^2\right)=8xy\sqrt{xy}\)

chỗ này bạn giải cẩn thận 1 tí được x=y

Với x=y thay vào pt 2 ta được

\(\sqrt{x}-\sqrt{2x-3}+2x=6\)

Nhân liên hợp ta đuọc

<=> \(\frac{\left(\sqrt{x}-\sqrt{2x-3}\right)\left(\sqrt{x}+\sqrt{2x-3}\right)}{\sqrt{x}+\sqrt{2x-3}}+2\left(x-3\right)=0\)

<=>\(\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}-2\left(3-x\right)=0\Leftrightarrow\left(3-x\right)\left(\frac{1}{\sqrt{x}+\sqrt{2x-3}}-2\right)=0\)

<=> x=3 Hoặc \(\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)(1)

Ta thấy vì \(x\ge\frac{3}{2}\Rightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}\le\frac{\sqrt{2}}{\sqrt{3}}<2\) ==> (1) vô nghiệm

Vậy ta có nghiệm của hệ pt là (x;y)=(3;3)

Được chưa bạn. không hiểu nói cho  mình

15 tháng 11 2016

A(-7; -20)

 

18 tháng 9 2018

cho mk đính chính lại cái đề nha 

x,y,z khác 0

18 tháng 9 2018

Ta có: (căn x+y)2=(căn x+z + căn y+x)2
suy ra:x+y=(căn x+z)+2(căn x+z)(căn y+z)+(căn y+z)2
suy ra:x+y=x+z+y+z+2[căn (x+z)(y+z)]
suy ra:-z=căn (x+z)(y+z)
suy ra:(-z)2=[căn (x+z)(y+z)]2
suy ra:z2=(x+z)(y+z)
suy ra:z2=xy+xz+yz+z2
suy ra:xy+yz+xz=0
suy ra:(xy+yz+xz)/xyz=0(vì x,y,z khác 0)
suy ra:xy/xyz+yz/xyz+xz/xyz=0
suy ra:1/x+1/y+1/z=0(ĐPCM)
K CHO MÌNH VỚI NHA

15 tháng 12 2019

sửa:\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{\left(x+2y\right).1}\le\frac{x+2y+1}{2}\)

\(\sqrt{\left(y+2z\right).1}\le\frac{y+2x+1}{2}\)

\(\sqrt{\left(z+2x\right).1}\le\frac{z+2x+1}{2}\)

Cộng từng vế đẳng thức trên ta được:

\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le\frac{3\left(x+y+z\right)+3}{2}=3\)

Dấu"="xảy ra \(\Leftrightarrow x+2y=1;y+2z=1;z+2x=1;x=y=z;x+y+z=1\)

                       \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy...