K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

help me

12 tháng 1 2021

cíuuuuuuTvT

15 tháng 2 2020

P=|3x-6|+|3x-1|=|6-3x|+|3x-1|\(\ge\)6-3x+3x-1=5

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}6-3x\ge0\\3x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge\frac{1}{3}\end{matrix}\right.\Leftrightarrow\frac{1}{3}\le x\le2\)

=> b=1/3, a=2

S=5

Vậy S=5

NV
15 tháng 2 2020

\(P=\left|3x-6\right|+\left|3x+1\right|=\left|6-3x\right|+\left|3x+1\right|\ge\left|6-3x+3x+1\right|=7\)

Dấu "=" xảy ra khi \(-\frac{1}{3}\le x\le2\Rightarrow\left\{{}\begin{matrix}b=-\frac{1}{3}\\a=2\end{matrix}\right.\)

\(\Rightarrow S=3\)

13 tháng 4 2018

Đáp án C

NV
2 tháng 3 2023

a.

Phương trình hoành độ giao điểm:

\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)

\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)

\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)

\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)

\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)

b.

Pt hoành độ giao điểm:

\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)

\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)

Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)

\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)

\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)

\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)

\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)

\(=18-4\left(-m-2\right)+6m+2m^2\)

\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)

Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)

2 tháng 3 2023

Mình cảm ơn ạ