K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong ΔEDC ta có:

M là trung điểm của ED

Q là trung điểm của EC

nên MQ là đường trung bình của ∆ EDC

⇒ MQ = 1/2 CD = 2,5 (cm) và MQ // CD

Trong  ∆ BDC ta có:

N là trung điểm của BD

P là trung điểm của BC

nên NP là đường trung bình của  ∆ BDC

⇒ NP = 1/2 CD = 2,5 (cm)

Trong  ∆ DEB ta có:

M là trung điểm của DE

N là trung điểm của DB

nên MN là đường trung bình của  ∆ DEB

⇒ MN = 1/2 BE = 2,5 (cm) và MN // BE

Trong  ∆ CEB ta có:

Q là trung điểm của CE

P là trung điểm của CB

nên QP là đường trung bình của  ∆ CEB

⇒ QP = 1/2 BE = 2,5 (cm)

Suy ra: MN = NP = PQ = QM (1)

MQ // CD hay MQ // AC

AC ⊥ AB (gt)

⇒ MQ ⊥ AB

MN // BE hay MN // AB

Suy ra: MQ ⊥ MN hay (QMN) = 90 0  (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình vuông

S M N P Q = M N 2 = 2 , 5 2 = 6 , 75   c m 2

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined

a: BC=căn 15^2+20^2=25cm

EC=25-5=20cm

ED//AC

=>BD/DA=BE/EC=1/4

=>BD/1=DA/4=15/5=3

=>BD=3cm; DA=12cm

EF//AB

=>FC/FA=EC/EB=4

=>FC/4=FA/1=20/5=4

=>FC=16cm; FA=4cm

b: DE=căn 5^2-3^2=4cm

=>C BDE=3+4+5=12cm

C CEF/C CAB=CE/CB=20/25=4/5

=>C CEF=4/5*(15+20+25)=4/5*60=48cm