K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

A B C M P N S1 S2 S3

a, Đặt: \(\hept{\begin{cases}S_1=S_{PMA}\\S_2=S_{NMB}\\S_3=S_{PNC}\end{cases}}\)

\(\Rightarrow\)\(\frac{S_1}{S}=\frac{AM.AP}{AB.AC}\)

Và: \(\frac{S_2}{S}=\frac{BM.BN}{AB.CB}\)

Và: \(\frac{S_3}{S}=\frac{CP.CN}{AC.BC}\)

Ta có: \(\frac{AM}{MB}=\frac{k}{1}\Leftrightarrow\frac{AM}{AM+MB}=\frac{k}{k+1}\Leftrightarrow\frac{AM}{AB}=\frac{k}{k+1}\)

\(\frac{CP}{PA}=\frac{k}{1}\Leftrightarrow\frac{AP}{CP}=\frac{1}{k}\Leftrightarrow\frac{AP}{AP+CP}=\frac{1}{k+1}\)

\(\Leftrightarrow\frac{AP}{AC}=\frac{1}{k+1}\Rightarrow\frac{S_1}{S}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{\left(k+1\right)^2}\)

Chứng minh tương tự ta có: \(\frac{S_2}{S}=\frac{k}{\left(k+1\right)^2}\) và \(\frac{S_3}{S}=\frac{k}{\left(k+1\right)^2}\)

\(\Rightarrow S_{MNP}=S-\left(S_1+S_2+S_3\right)=S-\frac{3k}{\left(k+1\right)^2}.S=S\left(1-\frac{3k}{\left(k+1\right)^2}\right)\)

b, \(S_{MNP}\) nhỏ nhất \(\Leftrightarrow\frac{k}{\left(k+1\right)^2}\)lớn nhất.

Ta có: \(\left(k+1\right)^2\ge4k\Leftrightarrow\frac{k}{\left(k+1\right)^2}\le\frac{1}{4}\)

\(\Rightarrow Max\left[\frac{k}{\left(k+1\right)^2}\right]=\frac{1}{4}\)

Khi \(k=1\Leftrightarrow M,P,N\) là trung điểm của \(AB,BC,CA\) và \(Min_{S_{MNP}}=S\left[1-\frac{3.1}{\left(1+1\right)^2}\right]=\frac{S}{4}\)

(Cũng không chắc)

6 tháng 2 2020

giải thích thêm chỗ S1/S, S2/S, S3/S

13 tháng 3 2020

ai đó giúp mik với

26 tháng 2 2018

Câu hỏi của Hoa Thân - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC
Do đó: MN là đường trung bình

=>MN=BC/2

Xét ΔABC có

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình

=>MP=AC/2

Xét ΔACB có

N là trung điểm của AC

P là trung điểm của BC

Do đó: NP là đường trung bình

=>NP=AB/2

Xét ΔMNP và ΔCBA có 

MN/BC=NP/BA=MP/AC=1/2

Do đó: ΔMNP\(\sim\)ΔCBA
Suy ra: \(\dfrac{S_{MNP}}{S_{CBA}}=\left(\dfrac{MN}{CB}\right)^2=\dfrac{1}{4}\)