K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

a)\(\dfrac{x+5}{3x-2}=\dfrac{x\left(x+5\right)}{x\left(3x-2\right)}\) b)\(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{8x+4}\) c)\(\dfrac{2x\left(x-2\right)}{x^2-4x+4}=\dfrac{2x}{x-2}\) d) \(\dfrac{5x^2+10x}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{x-2}\)

21 tháng 4 2017

undefined

12 tháng 11 2017

a, = x2

b, = 2x-2y hoặc 2(x-y)

13 tháng 9 2017

a) x(x+5)

b) 2x+1

c) x-2

d) x+2

13 tháng 9 2017

ý mình là vì sao được kết quả đó , giải thích ra giúp mình nha

hihi

27 tháng 5 2017

cố gắng là làm được

27 tháng 5 2017

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

29 tháng 11 2017

2)

a) \(5x^2y-10xy^2\)

\(=5xy\left(x-2y\right)\)

b) \(3\left(x+3\right)-x^2+9\)

\(=3\left(x+3\right)-\left(x^2-3^2\right)\)

\(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)

\(=\left(x+3\right)\left[3-\left(x-3\right)\right]\)

\(=\left(x+3\right)\left(3-x+3\right)\)

\(=\left(x+3\right)\left(6-x\right)\)

c) \(x^2-y^2+xz-yz\)

\(=\left(x^2-y^2\right)+\left(xz-yz\right)\)

\(=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+z\right)\)

29 tháng 11 2017

3)

a) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

Điều kiện xác định là: \(\left\{{}\begin{matrix}x-2\ne0\Rightarrow x\ne2\\x+2\ne0\Rightarrow x\ne-2\end{matrix}\right.\)

b) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\) MTC: \(\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

c) Thay \(x=1\) và biểu thức A ta được:

\(\dfrac{-4}{\left(1-2\right)\left(1+2\right)}=\dfrac{-4}{\left(-1\right).3}=\dfrac{-4}{-3}=\dfrac{4}{3}\)

Vậy giá trị của biểu thức A tại \(x=1\)\(\dfrac{4}{3}\)

28 tháng 6 2017

Tính chất cơ bản của phân thức

Tính chất cơ bản của phân thức

29 tháng 10 2017

Tính chất cơ bản của phân thức

3 tháng 12 2016

chịch chịch chịch

1 tháng 11 2016

Đây, bản full đây thím, tớ thực sự đã kiên nhẫn lắm đấy ...

a)\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

\(=4\left[\left(x^2-2x+1\right)-\left(a^2-2ay+y^2\right)\right]\)

\(=4\left[\left(x-1\right)^2-\left(a-y\right)^2\right]\)

\(=4\left(x-1-a+y\right)\left(x-1+a-y\right)\)

b)\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

c)\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(5x+5\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

d)\(a^5+a^4+a^3+a^2+a+1=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)

\(=\left(a+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a+1\right)\left[\left(a^2+1\right)^2-a^2\right]\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

e)\(x^3-3x^2+3x-1-y^3=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-1-y\right)\left(x^2-2x+1+xy-y+y^2\right)\)

f)\(5x^3-3x^2y-45xy^2+27y^3=5x\left(x^2-9y^2\right)-3y\left(x^2-9y^2\right)\)

\(=\left(x^2-9y^2\right)\left(5x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)\left(5x-3y\right)\)

g)\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)

\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)

\(=3\left(a-b+c\right)\left(x+6y\right)^2\)

1 tháng 11 2016

a/ \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=\left(2x-2\right)^2-\left(2y-2a\right)^2=\left(2x-2+2y-2a\right)\left(2x-2-2y+2a\right)\)

b/ \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

Giải giúp bạn 2 bài tiêu biểu thôi nha

a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)

\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)

=1/5-1=-4/5

\(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)

d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)

\(=20x^3-30x^2+15x+4\)

\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)