K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(x^2+2y^2-2xy+4y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2\ge0\)

Xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)

4 tháng 11 2017

bằng 1 nha bạn

17 tháng 2 2021

\(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)0

\(< =>\left(x^2+2xy+y^2\right)+7\left(x+y\right)+y^2+10=0\)

\(< =>\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

Đặt a=x+y ta có

\(a^2+7a+10+y^2=0\)

\(< =>a^2+7a+\frac{49}{4}-\frac{9}{4}+y^2=0\)

\(< =>\left(a+\frac{7}{2}\right)^2+y^2=\frac{9}{4}\)

Vì \(\frac{9}{4}\)=\(0+\frac{9}{4}\)và \(a+\frac{7}{2}>=y\)nên \(\hept{\begin{cases}x+y+\frac{7}{2}=\frac{3}{2}\\y=0\end{cases}}\)\(=>\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

2 tháng 5 2016

<=>(x+y2 +1+2xy-2x-2y) +2(x- 12x+36) = 54
<=>(x+y-1)+2(x-6)=6+2*32

=>x+y-1=6 và x-6=3