Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản,
và A/B là phân số chưa tối giản)
=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17=
12252240
Ta nhận thấy các phân số sau khi qui đồng đều có tử chia
hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B
chia hêt cho 11 => b chia hết cho 11(1)
Bằng cách lý luận tương tự ta cũng có A không chia hết cho
13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2)
Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17
là các số nguyên tố => đpcm
1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản,
và A/B là phân số chưa tối giản)
=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17=
12252240
Ta nhận thấy các phân số sau khi qui đồng đều có tử chia
hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B
chia hêt cho 11 => b chia hết cho 11(1)
Bằng cách lý luận tương tự ta cũng có A không chia hết cho
13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2)
Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17
là các số nguyên tố => đpcm
Bài 1 :
\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)
\(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
\(=\frac{13.\left(84+70+63+60\right)}{2520}\)
\(=\frac{13.277}{2520}\)
Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)
Vậy a chia hết cho 13
Bài 2 :
Ta có : \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)
Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)
Từ (1) ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau
Suy ra ;\(b'⋮b\left(2\right)\)
Tương tự ta cũng có \(b⋮b\left(3\right)\)
Từ (2 ) và (3 ) suy ra \(b=b'\)
Chúc bạn học tốt ( -_- )
qui đồng ms biểu thức trên và cộng lại ta có:
MS = 2.3.4.5. ...... 25 chia hết cho 13, 17, 19
13,17,19 đều là số nguyên tố nên MS chia hết cho 13x17x19 =4199.
bây giờ ta chỉ cần chứng minh TS không chia hết cho 4199 (để khi làm tối giản không mất 3 thừa số 13,17,19
ta có:
TS = tổng các số hạng (24 số hạng) trong đó có 21 số hạng đều có chứa cả 3 số 13,17,19 nên chia hết cho 4199
A= tổng 3 số hạng còn lại chỉ chứa 2 trong 3 thừa số 13,17,19
A= 2.3.....12.14....17. ...25 + 2.3.4.......13.....16.18.19...25 + 2.3......13......17.18.20.....25
=2.3.....12.14...16.18.20.....25 (17.19+ 13.17 + 13.19)
=2.3.....12.14...16.18.20.....25 . 719
719 không chia hết cho 13,17,19 nên A không chia hết cho 13,17,19
A không chia hết cho 13x17x19= 4199
vậy tử số không chia hết cho 4199 (đpcm)
Ta có:
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}=\frac{1}{2020}\)
Theo bài ra ta có:
\(\frac{1+7A}{1+9A}=\frac{1+7\cdot\frac{1}{2020}}{1+9\cdot\frac{1}{2020}}=\frac{9\left(1+7\cdot\frac{1}{1010}\right)}{7\left(1+9\cdot\frac{1}{1010}\right)}=\frac{9}{7}\)
\(=>\frac{1+7A}{1+9A}\)là phân số tối giản (ĐPCM)
Bạn giải sai rồi
Cái chỗ \(\frac{9\left(1+7.\frac{1}{1010}\right)}{7\left(1+9.\frac{1}{1010}\right)}\) ở trong ngoặc có số 7 và 9 không giống nhau nên không thể rút gọn
Đặt A=1/22+1/32+...+1/42
Ta có 1/22<1/1.2(vì 22>1.2)
1/32<1/2.3(vì 32>2.3)
..............
1/20132<1/2012.2013(vì 20132>2012.2013)
=>1/22+1/32+...+1/20132<1/1.2+1/2.3+...+1/2012.2013
=>A<1-1/2+1/2-1/3+...+1/2012-1/2013
=>A<1-1/2013
mà 1-1/2013<1=>A<1
Vậy 1/22+1/32+...+1/20132<1
gọi d làước chung lớn nhất (2n+2;2n+1)
ta có (2n+2-2n-1)=1
Neenn 2n+2/2n+1 là phân số tối giản với n thuộc N thuộc số tự nhiên khác ko