Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi phân số cần tìm là a/b
Theo bài ta có: a/b + b/a = 41/20 mà a/b . b/a = 1
Đặt a/b - b/a = k
=> a/b = 41/20 + k/2 => b/a = 41/20 - k/2
=> a/b . b/a = 41/20 + k/2 . 41/20 - k/2 = 1
=>( 41/20 + k/2).( 41/20 - k/2) / 4 = 1
=> (41/20)^2 - k^2 = 4
=> 1681/ 400 - k^2 = 1600/400
=> k^2 = 81/400
=> k = 9/20
Vậy phân số cần tìm là: (41/20 + 9/20)/2 = 5/4
# Aeri #
Bài 4:
Gọi hai số cần tìm là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=258\\\dfrac{9}{11}a-\dfrac{6}{7}b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=132\\b=126\end{matrix}\right.\)
\(a,\)Số cần tìm là :
\(1:\frac{41}{20}=\frac{20}{41}\)
Vậy.................
b,Ta có :abcd \(⋮9\)và a+b+c+d chia hết cho 9
\(\Rightarrow1000a+100b+10c+d⋮9\)
\(\Rightarrow999a+99b+9c+d+a+b+c⋮9\)
\(=9\left(111a+11b+c\right)+a+b+c+d⋮9\)
a. Gọi phân số cần tìm là \(\frac{a}{b}\)
\(\Rightarrow\) Phân số nghịch đảo là \(\frac{b}{a}\)
Theo bài ra, ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow a\left(a-b\right)+b\left(b-a\right)\ge0\)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì (a-b)2 chắc chắn lớn hơn hoặc bằng 0
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Vậy tổng của một phân số dương với ghịch đảo của nó luôn lớn hơn hoặc bằng 2.
1)+Số đối của \(\dfrac{2}{3}\)là \(-\dfrac{2}{3}\)
+Số đối của\(-\dfrac{1}{4}\)là\(\dfrac{1}{4}\)
+Số đối của -0,5 là 0,5
Vậy tổng các số đối của\(\dfrac{2}{3};-\dfrac{1}{4};-0,5\)là:
\(\left(-\dfrac{2}{3}\right)+\dfrac{1}{4}+0,5=\dfrac{1}{12}\)
2)Ta có số nghịch đảo của x là \(\dfrac{1}{x}\)
Theo đề ta lại có:
5 lần \(\dfrac{1}{x}\)là\(\dfrac{1}{2}\Rightarrow\dfrac{1}{x}=\dfrac{1}{2}:5=\dfrac{1}{10}\)
Vậy x=10
Mk làm thử các bạn xem có đúng không nhé
Theo đề bài ta có :
\(x+\frac{1}{x}=\frac{x^2}{x}+\frac{1}{x}=\frac{x^2+1}{x}\)
Để \(\frac{x^2+1}{x}\inℤ\) thì \(x^2+1\) phải chia hết cho \(x\)
Lại có \(x^2\) chia hết cho \(x\)
\(\Rightarrow\)\(x^2+1-x^2\) chia hết cho \(x\)
\(\Rightarrow\)\(1⋮x\)
\(\Rightarrow\)\(x\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
Vậy \(x\in\left\{1;-1\right\}\)
-2/3 + -3/2 = -13/6