K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

ta có:

BCNN(13,19)=247<=>BC(13,19)=B(247)

mà BC(13,19) là tổng của 2017 và 1 số tự nhiên nên GTNN của tổng 2017 và 1 số tự nhiên phải là B(247) và lớn hơn hoặc bằng 2017

Suy ra tổng của 2017 và 1 số tự nhiên là 2223

Dó đó số tự nhiên cần tìm là 2223-2017=206

21 tháng 5 2017

làm sai đoạn cuối rồi nhé bạn!

21 tháng 11 2017

vcl chết đi

tự mà mua sách giải

16 tháng 9 2017

a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y

=5x3-7x2y+2xy2+5x-2y

b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-2x+20\)

16 tháng 9 2017

c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)

=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)

d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

=\(-5x+4x-15\)

=\(-x-15\)

Chúc bạn học tốt(mỏi tay quá)

4 tháng 9 2017

còn nhé ban hihi

Sao bạn rảnh dữ vậy

22 tháng 10 2017

Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3

Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3

Ư(3) = {\(\pm\) 3; \(\pm\) 1}

\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)

\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)

\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)

Vậy \(n=\left\{0;-2;\pm1\right\}\)

11 tháng 10 2017

oho

15 tháng 9 2017

\(M=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(M=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(M=\left[x\left(x+5\right)+2\left(x+5\right)\right]\left[x\left(x+4\right)+3\left(x+4\right)\right]-24\)

\(M=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)

\(M=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(M=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)-24\)

\(M=\left(x^2+7x+11\right)^2-1-24\)

\(M=\left(x^2+7x+11\right)^2-25\)

\(M=\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)

\(M=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

7 tháng 10 2017

https://hoc24.vn/hoi-dap/question/54430.html

7 tháng 10 2017

 

\(A=\left(2n-1\right)^3-2n+1\)

\(A=8n^3-6n+6n-1-2n+1\)

\(A=8n^3-2n=2n\left(4n^2-1\right)\)

\(A=2n\left(2n+1\right)\left(2n-1\right)\)

\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)

27 tháng 4 2017

Bài 1 : \(2\left(3x-1\right)-3x=10\)

\(\Leftrightarrow6x-2-3x=10\)

\(\Leftrightarrow3x=12\)

\(\Leftrightarrow x=4\)

Vậy...................

b ) \(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\left(1\right)\)

ĐKXĐ : \(x\ne0;x\ne-1\)

\(\left(1\right)\Rightarrow\left(x+1\right)^2+x\left(x+1\right)=x\left(3x-1\right)+1\)

\(\Leftrightarrow x^2+2x+1+x^2+x-3x^2+x-1=0\)

\(\Leftrightarrow-x^2+4x=0\)

\(\Leftrightarrow x\left(-x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTMĐKXĐ\right)\\x=4\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy .......................

c ) \(\dfrac{2x+1}{3}-\dfrac{3x-2}{2}>\dfrac{1}{6}\)

\(\Leftrightarrow2\left(2x+1\right)-3\left(3x-2\right)>1\)

\(\Leftrightarrow4x+2-9x+6>1\)

\(\Leftrightarrow-5x>-7\)

\(\Leftrightarrow x< \dfrac{7}{5}.\)

Vậy .......

27 tháng 4 2017

a ) \(A=\left(\dfrac{x^2-3}{x^2-9}+\dfrac{1}{x-3}\right):\dfrac{x}{x+3}.ĐKXĐ:x\ne3;x\ne-3\)

\(A=\left(\dfrac{x^2-3}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{\left(x-3\right)}\right).\dfrac{x+3}{x}\)

\(A=\dfrac{x^2-3x+x^2+3x}{x\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x}\)

\(A=\dfrac{x+1}{x-3}\)

b ) \(\left|A\right|=3.\) thì x là ?

\(\left|\dfrac{x+1}{x-3}\right|=3\)

Kẻ bảng ra làm nha :D

16 tháng 5 2017

Ta có: (a2 + b2)(x2 + y2) = (ax + by)2

<=> a2x2 + a2y2 + b2x2 + b2y2 = a2x2 + 2axby + b2y2

<=> a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2 = 0

<=> (a2y2 - axby) + (b2x2 - axby) = 0

<=> ay(ay - bx) - bx(ay - bx) = 0

<=> (ay - bx)2 = 0

<=> ay - bx = 0

Vậy bài toán đã được chứng minh

17 tháng 5 2017

Sửa đề: thì \(ay-bx=0\)

Giải:

Xét hiệu: \(\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ax+by\right)^2\)

\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2\) \(-2axby\)

\(=a^2y^2-2axby+b^2x^2\)

\(=\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\) (Đpcm)