K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

a) a + b = c => b = c - a 

Hoặc : b bằng số hữu tỉ cộng với số vô tỉ suy ra b là số vô tỉ 

Vậy b là số vô tỉ 

b) Giả sử b = 0 thì ab = 0 => b là số hữu tỉ 

Nếu b khác 0 và cho ab = c => b = c : a 

Hoặc : b bằng số hữu tỉ chia cho số vô tỉ suy ra b là số vô tỉ 

Vậy b là số hữu tỉ nếu b = 0 ; b là số vô tỉ nếu b khác 0 

18 tháng 10 2017
Sao lúc nãy tk mik sai ?
24 tháng 10 2018

tổng các số hữu tỉ và số vô tỉ là số vô tỉ

4 tháng 12 2019

a) giả sử tổng số hữu tỉ và số vô tỉ là số hữu tỉ

Ta có a+b=c(a,c là số hữu tỉ ; b là số vô tỷ)

=> b=c-a 

mà c-a là số hữu tỉ ( do a,c là số hữu tỉ)

=> b là số hữu tỉ trái đề bài

Vậy tổng số hữu tỉ và số vô tỉ là số vô tỉ

b) phần này cần điều kiện số hữu tỉ khi nhân kia phải khác 0

Giả sử tích một số vô tỉ và một số hữu tỉ là 1 số hữu tỉ

Ta có a.b=c (a,c là số hữu tỉ ; b là số vô tỷ, a khác 0)

=> b=c/a 

mà c/a là số hữu tỉ ( do a,c là số hữu tỉ)

=> b là số hữu tỉ trái đề bài 

Vậy tích một số vô tỉ và một số hữu tỉ là 1 số vô tỉ

20 tháng 9 2019

a) Ta có: \(\frac{\left(x+y\right)+\left(x-y\right)}{2}=x\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay x là số hữu tỉ)

 \(\frac{\left(x+y\right)-\left(x-y\right)}{2}=y\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay y là số hữu tỉ)

b) x và y có thể là số vô tỉ

VD: \(x=\sqrt{6};y=-\sqrt{6}\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\\frac{x}{y}=-1\end{cases}}\)(đều là số hữu tỉ)

20 tháng 9 2019

a, \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2}\)         ;         \(y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)

tổng, hiệu của 2 số hữu tỉ là một số hữu tỉ. Thương của một số hữu tỉ với một số hữu tỉ khác 0 cùng là một số hữu tỉ. 

Vậy x,y đều là các số hữu tỉ không thể là số vô tỉ.

b, x và y có thể là số vô tỉ . Chẳng hạn \(x=-\sqrt{2}\) \(y=\sqrt{2}\) thì \(x+y=-\sqrt{2}+\sqrt{2}=0\)

\(\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)

4 tháng 2 2020

a) Giả sử \(\sqrt{a}\notin I\Rightarrow\sqrt{a}\in Q\)

=> \(\sqrt{a}=\frac{m}{n}\)(m,n) = 1 ; m,n \(\in\)N

Vì a không là số chính phương

=> \(\sqrt{a}\notin N\)

=>\(\frac{m}{n}\notin N\)

=> n > 1

Vì \(\sqrt{a}=\frac{m}{n}\Rightarrow a=\frac{m^2}{n^2}\Rightarrow m^2=an^2\)

Vì n > 1 => Giả sử n có ước nguyên tố là p => n\(⋮\)p

Mà m2 = an2 => m\(⋮\)p

=> m,n có ước chung là p trái với gt m,n nguyên tố cn

=> Giả sử là sai

=> \(\sqrt{a}\in I\)

Vậy_

b) AD câu a có 2 \(\in\)N, 2 k phải SCP => \(\sqrt{2}\in I\)

+ giả sử 1 - \(\sqrt{2}\notin I\)=> 1 - \(\sqrt{2}\in Q\)

Mà \(\sqrt{2}\in I\)=> 1-\(\sqrt{2}\in I\)( trái với gt)

=> 1-\(\sqrt{2}\in I\)

25 tháng 3 2015

Gỉa sử \(\sqrt{15}\) là số hữu tỉ

=> \(\sqrt{15}=\frac{m}{n}\)( trong đó \(\frac{m}{n}\) là phân số tối giản)=> \(15=\frac{m^2}{n^2}\) hay \(15n^2=m^2\)(1)

Từ (1) => \(m^2\) chia hết cho 15 => m chia hết 15

Đặt m=15k( \(k\in Z\))=> \(m^2=225k^2\)(2)

Tứ (1);(2)=> \(15n^2=225k^2\)=> \(n^2=15k^2\)(3)

Từ (3) => \(n^2\)chia hết cho 15 => n chia hết cho 15 

=> \(\frac{m}{n}\)không phải là phân số tối giản trái với giả thiết => \(\sqrt{15}\)không phải là số hửu tỉ 

Vậy \(\sqrt{15}\)là số vô tỉ(dpcm)

26 tháng 3 2015

Giả sử \(\sqrt{7}\) là số hữu tỉ, như vậy có thể viết dưới dạng phân số tối giản \({m\over n}\) tức là \(\sqrt{7} = {m \over n}\) . Suy ra \(7={m^2 \over n^2}\) hay \(7m^2=n^2\) (1)

Đảng thức (1) chứng tỏ \(m^2\vdots7\) mà 7 là số nguyên tố nên \(m\vdots7\) .

Đặt\(m=7k\)  (k∈ℤ) ta có \(m^2=49k^2\) (2)

Từ (1) và (2) suy ra \(7n^2=49k^2\) nên \(n^2=7k^2\)  (3)

Từ (3) ta lại có \(n^2\vdots7\) và vì 7 là số nguyên tố nên \(n\vdots7\) .

Như vậy m và n cùng chia hết cho 7 nên phân số \({m \over n}\) không tối giản, trái với giả thiết. Vậy \(\sqrt{7}\) không phải là số hữu tỉ, do đó \(\sqrt7\) là số vô tỉ