K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 10 2020

ĐKXĐ:

\(\Leftrightarrow\frac{1}{cosx}+\frac{1}{sin2x}=\frac{1}{sin2x.cos2x}\)

\(\Leftrightarrow\frac{2sinx.cos2x}{sin2x.cos2x}+\frac{cos2x}{sin2x.cos2x}=\frac{1}{sin2x.cos2x}\)

\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)

\(\Leftrightarrow2sinx\left(cos2x-sinx\right)=0\)

\(\Leftrightarrow cos2x-sinx=0\)

\(\Leftrightarrow-2sin^2x-sinx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}\\x=\frac{5\pi}{6}\end{matrix}\right.\) \(\Rightarrow\sum x=\pi\)

24 tháng 6 2019

\(\cos5x=-\sin4x\)

<=> \(\cos5x=\cos\left(4x+\frac{\pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}5x=4x+\frac{\pi}{2}+k2\pi\\5x=-4x-\frac{\pi}{2}+k2\pi\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}}\)

Nghiệm âm lớn nhất: \(-\frac{\pi}{18}\)

Nghiệm dương  nhỏ nhất: \(\frac{\pi}{2}\)

24 tháng 6 2019

pt <=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x-\frac{\pi}{3}+\frac{\pi}{2}\right)\)

<=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x+\frac{\pi}{6}\right)\)

<=> \(\orbr{\begin{cases}5x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\5x+\frac{\pi}{3}=\pi-2x-\frac{\pi}{6}+k2\pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\end{cases}}\)

Trên \(\left[0,\pi\right]\)có các nghiệm:

\(\frac{11\pi}{18},\frac{\pi}{14},\frac{5\pi}{14},\frac{9\pi}{14},\frac{13\pi}{14}\)

tính tổng:...

17 tháng 8 2019

1/ ĐKXĐ: \(\cos2x\ne0\)

\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)

\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)

\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)

\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

17 tháng 8 2019

2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)

Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r

NV
10 tháng 7 2020

a/

\(\Leftrightarrow sin2x\left(1+\sqrt{2}sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}sinx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=-\frac{\sqrt{2}}{2}=sin\left(-\frac{\pi}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow2sin2x.cos2x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x=-sinx=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}4x=-x+k2\pi\\4x=\pi+x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{5}\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
10 tháng 7 2020

e/

\(sin\left(\frac{3\pi}{2}-sinx\right)=1\)

\(\Leftrightarrow\frac{3\pi}{2}-sinx=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow sinx=\pi+k2\pi\)

\(-1\le sinx\le1\Rightarrow-1\le\pi+k2\pi\le1\)

\(\Rightarrow\) Không tồn tại k nguyên thỏa mãn

Pt đã cho vô nghiệm

f/

\(cos^2x-sin^2x+sin4x=0\)

\(\Leftrightarrow cos2x+2sin2x.cos2x=0\)

\(\Leftrightarrow cos2x\left(1+2sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow sinx=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

d/

\(\Leftrightarrow sin2x-2cos2x-5=2sin2x-cos2x-6\)

\(\Leftrightarrow sin2x+cos2x=1\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

a/ ĐKXĐ:...

\(\Leftrightarrow\frac{sinx}{cosx}-\frac{\sqrt{2}}{cosx}=1\)

\(\Leftrightarrow sinx-\sqrt{2}=cosx\)

\(\Leftrightarrow sinx-cosx=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{3\pi}{4}+k2\pi\)

b/

ĐKXĐ: ...

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x-1\right)+cos4x\left(2sinx-1\right)=0\)

\(\Leftrightarrow2sinx.sin4x-2sinx-sin4x+1+2sinx.cos4x-cos4x=0\)

\(\Leftrightarrow2sinx\left(sin4x+cos4x\right)-\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin4x+cos4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k\pi}{2}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\left(l\right)\end{matrix}\right.\)

NV
20 tháng 8 2020

7.

Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)

Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)

Pt trở thành:

\(\frac{t^2-1}{2}+t=1\)

\(\Leftrightarrow t^2+2t-3=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)

\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)

NV
20 tháng 8 2020

6.

\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)

Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)

NV
20 tháng 9 2020

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

NV
20 tháng 9 2020

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

29 tháng 9 2020

@Nguyễn Việt Lâm giúp em với ạ

NV
30 tháng 9 2020

3.

a.

\(\Leftrightarrow\left(cos3x-cosx\right)+\left(cos2x-1\right)=0\)

\(\Leftrightarrow-2sin2x.sinx+1-2sin^2x-1=0\)

\(\Leftrightarrow sin2x.sinx+sin^2x=0\)

\(\Leftrightarrow2sin^2x.cosx+sin^2x=0\)

\(\Leftrightarrow sin^2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)