\(\overline{abc}\) \(=\left(a+b+c\right)^3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

7. Theo bài ra ta có: \(=2x^2-3x+7-3x^2+5x-4-2x+x^2\)

Khi phá ngoặc trước dấu trừ cần đổi dấu hạng tử đó...

   Ta trừ những số có cùng biến cho nhau ... 

\(=\left(2x^2-3x^2+x^2\right)+\left(-3x+5x-2x\right)+\left(7-4\right)\)

\(=3\)

26 tháng 6 2017

1, Chưa cho điểm làm sao biết đc bạn???

2, DBC=(180 - 140) :2 = 20 độ;

3,  => A = 2B =6C , thay vào ta có:

      6C + 3C +C =180 => C=18 => A= 108=> B=54;

4,\(=\frac{2^3.2^3+3.2^2.3^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=\frac{27.13}{-13}=-27\)

5,=> 100a+10b+c= 11a+11b+11c

  hay 89 a= b+10c , a < 2 do a=2 thì b,c không thể là số có một chữ số;

=> a=1 ; Để 89 chia hết cho 10 => b=9; c=8;

=> Số đó là 198...

6, nếu x lớn hơn hoặc bằng 5 thì:   6x -3 - (x-5) =>     A= 6x-3-x+5

=>A= 5x+2  ( A phụ thuộc vào x);

7, phá ngoặc đi rồi rút gọn ta được x=3....

đúng ko zậy...???????

26 tháng 11 2016

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)

Cộng theo vế ba đẳng trên được dpcm.

bn làm đúng rồi đó

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

10 tháng 9 2019

1b.

Cach 1

Ta co:

\(M=\frac{x^2-2x+2015}{x^2}\)

\(\Leftrightarrow\left(M-1\right)x^2+2x-2015=0\)

Xet \(M=1\)suy ra:\(x=\frac{2015}{2}\)

Xet \(M\ne1\)

\(\Leftrightarrow\Delta^`\ge0\)

\(1+\left(M-1\right).2015\ge0\)

\(\Leftrightarrow2015M-2014\ge0\)

\(\Leftrightarrow M\ge\frac{2014}{2015}\)

Dau '=' xay ra khi \(x=-\frac{1}{M-1}\Leftrightarrow x=2015\)

Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)

Cach 2

\(M=\frac{x^2-2x+2015}{x^2}=\frac{2014x^2+\left(x-2015\right)^2}{2015x^2}=\frac{2014}{2015}+\frac{\left(x-2015\right)^2}{2015x^2}\ge\frac{2014}{2015}\)

Dau '=' xay ra khi \(x=2015\)

Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs