\(x^{12}+y^{12}+z^{12}=2\left(37^{2012}+2014^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Ta có \(\left(12-x\right)\left(12-y\right)\left(12-z\right)\le\frac{\left(36-x-y-z\right)^3}{27}\)

=> \(xyz\le\frac{\left(36-x-y-z\right)^6}{27^2}\)

Mà \(x+y+z\ge3\sqrt[3]{xyz}\)

=> \(xyz\le\frac{\left(36-3\sqrt[3]{xyz}\right)^6}{27^2}\)

<=>\(\sqrt[6]{xyz}\le12-\sqrt[3]{xyz}\)

<=> \(\sqrt[6]{xyz}\le3\)

=> \(xyz\le729\)

Vậy Max xyz=729 khi x=y=z=9

9 tháng 6 2019

Thêm cái nữa là chỉ dùng BĐT AM-GM (Cô si) thôi nhé mn!

9 tháng 5 2019

.  \(y^2=x^2+12x+1998\Leftrightarrow y^2=\left(x+6\right)^2+1962\Leftrightarrow y^2-\left(x+6\right)^2=1962.\) 

\(\Leftrightarrow\left(y-x-6\right)\left(y+x+6\right)=1962.\) Phải phân tích số 1962 thành tích  của hai số. Phân tích 1962 thành tích các thừa số nguyên tố : 1962 = 2.3.3.109. Chia trường hợp để xét, đưa về giải hệ hai phương trình 2 ẩn x, y.

- Trường hợp 1:  \(\hept{\begin{cases}y-x-6=1\\y+x+6=1962\end{cases}\Leftrightarrow\hept{\begin{cases}y-x=7\\y+x=1956\end{cases}\Rightarrow}x,y\notin Z}\) 

- Trường hợp 2: \(\hept{\begin{cases}y-x-6=2\\y+x+6=981\end{cases}\Leftrightarrow\hept{\begin{cases}y-x=8\\y+x=975\end{cases}\Rightarrow}x,y\notin Z.}\)  

-  Trường hợp 3:  \(\hept{\begin{cases}y-x-6=6\\y+x+6=327\end{cases}\Leftrightarrow\hept{\begin{cases}y-x=12\\y+x=321\end{cases}\Rightarrow}x,y\notin Z.}\) 

...... Tiếp tục xét ta thấy không có các số nguyên x, y nào thỏa mãn phương trình trên.

NV
21 tháng 2 2019

a/ Đặt \(x^2+x+1=a\Rightarrow x^2+x+2=a+1\)

Pt trở thành \(a\left(a+1\right)-12=0\Leftrightarrow a^2+a-12=0\)

\(\Leftrightarrow a^2-3a+4a-12=0\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=3\\x^2+x+1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+2\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

2/ \(\dfrac{x+1}{2014}+1+\dfrac{x+2}{2013}+1=\dfrac{x+3}{2012}+1+\dfrac{x+4}{2011}+1\)

\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}=\dfrac{x+2015}{2012}+\dfrac{x+2015}{2011}\)

\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)

\(\Leftrightarrow x+2015=0\) (do \(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\))

\(\Rightarrow x=-2015\)

19 tháng 4 2020

b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)

không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:

\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)

\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)

\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)

ĐCĐK và kết luận

Vậy (1;1;13);(13;1;1);(1;13;1)

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0

2 tháng 1 2018

phương trình 1 có nhiều ẩn thế bn

2 tháng 1 2018

Câu 2:, ta có 

Xét x=1, ...

Xét x khác 1 ...

\(y=\frac{x^2+2}{x-1}=\frac{x^2-1+3}{x-1}=x+1+\frac{3}{x-1}\)

và y là số nguyên => x-1 llà ước của 3, đến đây tự giải nhé 

^_^